Documentation

FormalConjectures.ErdosProblems.«316»

Erdős Problem 316 #

Reference: erdosproblems.com/316

theorem erdos_316 :
(∀ (A : Finset ), 0A1AnA, 1 / n < 2∃ (A₁ : Finset ) (A₂ : Finset ), Disjoint A₁ A₂ A = A₁ A₂ nA₁, 1 / n < 1 nA₂, 1 / n < 1) False

Is it true that if $A \subseteq \mathbb{N}∖{1}$ is a finite set with $\sum_{n \in A} \frac{1}{n} < 2$ then there is a partition $A=A_1 \sqcup A_2$ such that $\sum_{n \in A_i} \frac{1}{n} < 1$ for $i=1,2$?

This is not true in general, as shown by Sándor [Sa97].

[Sa97] S'{A}ndor, Csaba, On a problem of Erdős. J. Number Theory (1997), 203-210.

theorem erdos_316.variants.multiset :
∃ (A : Multiset ), 0A 1A (Multiset.map (fun (x : ) => 1 / x) do let aA pure a).sum < 2 ∀ (A₁ A₂ : Multiset ), A = A₁ + A₂1 (Multiset.map (fun (x : ) => 1 / x) do let aA₁ pure a).sum 1 (Multiset.map (fun (x : ) => 1 / x) do let aA₂ pure a).sum

It is not true if A is a multiset (easier)

theorem erdos_316.variants.generalized (n : ) (hn : 2 n) :
∃ (A : Finset ), A.Nonempty 0A 1A kA, 1 / k < n ∀ (P : Finpartition A), P.parts.card = npP.parts, 1 np, 1 / n

More generally, Sándor shows that for any $n≥2$ there exists a finite set $A \subseteq \mathbb{N}∖{1}$ with $\sum_{n \in A} \frac{1}{k} < n$ , and no partition into $n$ parts each of which has $\sum_{n \in A_i} \frac{1}{k} < 1$.