Documentation

FormalConjectures.ErdosProblems.«312»

Erdős Problem 312 #

Reference: erdosproblems.com/312

theorem Erdos312.erdos_312 :
(∃ (c : ), 0 < c ∀ (K : ), 1 < K∃ (N₀ : ), ∀ (n : ) (a : Fin n), n N₀ i : Fin n, (↑(a i))⁻¹ > K∃ (S : Finset (Fin n)), 1 - Real.exp (-(c * K)) < iS, (↑(a i))⁻¹ iS, (↑(a i))⁻¹ 1) sorry

Does there exist a constant c > 0 such that, for any K > 1, whenever A is a sufficiently large finite multiset of integers with $\sum_{n \in A} 1/n > K$ there exists some $S \subseteq A$ such that $1 - \exp(-(c*K)) < \sum_{n \in S} 1/n \le 1$?