Documentation

FormalConjectures.ErdosProblems.«306»

Erdős Problem 306 #

Reference: erdosproblems.com/306

theorem erdos_306 :
(∀ (q : ), 0 < qSquarefree q.den∃ (k : ) (n : Fin (k + 1)), n 0 = 1 StrictMono n (∀ iFinset.Icc 1 k, ArithmeticFunction.cardDistinctFactors (n i) = 2 ArithmeticFunction.cardFactors (n i) = 2) q = iFinset.Icc 1 k, 1 / (n i)) sorry

Let $\frac a b\in \mathbb{Q}_{>0}$ with $b$ squarefree. Are there integers $1 < n_1 < \dots < n_k$, each the product of two distinct primes, such that $\frac{a}{b}=\frac{1}{n_1}+\cdots+\frac{1}{n_k}$?

theorem erdos_306.variant.integer_three_primes (m : ) (h : 0 < m) :
∃ (k : ) (n : Fin (k + 1)), n 0 = 1 i < k, n i < n (i + 1) (∀ iFinset.Icc 1 k, ArithmeticFunction.cardDistinctFactors (n i) = 3 ArithmeticFunction.cardFactors (n i) = 3) m = iFinset.Icc 1 k, 1 / (n i)

Every positive integer can be expressed as an Egyptian fraction where each denominator is the product of three distinct primes.