Erdős Problem 306 #
Reference: erdosproblems.com/306
theorem
erdos_306 :
(∀ (q : ℚ),
0 < q →
Squarefree q.den →
∃ (k : ℕ) (n : Fin (k + 1) → ℕ),
n 0 = 1 ∧ StrictMono n ∧ (∀ i ∈ Finset.Icc 1 k,
ArithmeticFunction.cardDistinctFactors (n ↑i) = 2 ∧ ArithmeticFunction.cardFactors (n ↑i) = 2) ∧ q = ∑ i ∈ Finset.Icc 1 k, 1 / ↑(n ↑i)) ↔ sorry
Let $\frac a b\in \mathbb{Q}_{>0}$ with $b$ squarefree. Are there integers $1 < n_1 < \dots < n_k$, each the product of two distinct primes, such that $\frac{a}{b}=\frac{1}{n_1}+\cdots+\frac{1}{n_k}$?
theorem
erdos_306.variant.integer_three_primes
(m : ℕ)
(h : 0 < m)
:
∃ (k : ℕ) (n : Fin (k + 1) → ℕ),
n 0 = 1 ∧ ∀ i < k,
n ↑i < n (↑i + 1) ∧ (∀ i ∈ Finset.Icc 1 k,
ArithmeticFunction.cardDistinctFactors (n ↑i) = 3 ∧ ArithmeticFunction.cardFactors (n ↑i) = 3) ∧ ↑m = ∑ i ∈ Finset.Icc 1 k, 1 / ↑(n ↑i)
Every positive integer can be expressed as an Egyptian fraction where each denominator is the product of three distinct primes.