Erdős Problem 304 #
Reference: erdosproblems.com/304
Let $$N(a, b)$$, denoted here by smallestCollection a b
be the minimal k such that there
exist integers $1 < n_1 < n_2 < ... < n_k$ with
$$\frac{a}{b} = \sum_{i=1}^k \frac{1}{n_i}$$
Equations
- smallestCollection a b = sInf (unitFractionExpressible a b)
Instances For
Write $$N(b) = max_{1 \leq a < b} N(a, b)$$.
Equations
- smallestCollectionTo b = sSup {x : ℕ | ∃ a ∈ Finset.Ico 1 b, smallestCollection a b = x}
Instances For
In 1950, Erdős [Er50c] proved the upper bound $$N(b) \ll \log b / \log \log b$$. [Er50c] Erdős, P., Az ${1}/{x_1} + {1}/{x_2} + \ldots + {1}/{x_n} =A/B$ egyenlet eg'{E}sz sz'{A}m'{u} megold'{A}sairól. Mat. Lapok (1950), 192-210.
In 1950, Erdős [Er50c] proved the lower bound $$\log \log b \ll N(b)$$. [Er50c] Erdős, P., Az ${1}/{x_1} + {1}/{x_2} + \ldots + {1}/{x_n} =A/B$ egyenlet eg'{E}sz sz'{A}m'{u} megold'{A}sairól. Mat. Lapok (1950), 192-210.
In 1985 Vose [Vo85] proved the upper bound $$N(b) \ll \sqrt{\log b}$$. [Vo85] Vose, Michael D., Egyptian fractions. Bull. London Math. Soc. (1985), 21-24.
Is it true that $$N(b) \ll \log \log b$$?