Documentation

FormalConjectures.ErdosProblems.«304»

Erdős Problem 304 #

Reference: erdosproblems.com/304

The set of k for which a / b can be expressed as a sum of k distinct unit fractions.

Equations
Instances For
    theorem eq_inv_of_one_mem_unitFractionExpressible {a b : } (h : 1 unitFractionExpressible a b) :
    ∃ (m : ), 1 < m a / b = (↑m)⁻¹
    noncomputable def smallestCollection (a b : ) :

    Let $$N(a, b)$$, denoted here by smallestCollection a b be the minimal k such that there exist integers $1 < n_1 < n_2 < ... < n_k$ with $$\frac{a}{b} = \sum_{i=1}^k \frac{1}{n_i}$$

    Equations
    Instances For
      theorem smallestCollection_pos {a b : } (ha : a 0) (hb : b 0) (h : (unitFractionExpressible a b).Nonempty) :
      theorem eq_one_of_smallestCollection_eq_one {a b : } (h : smallestCollection a b = 1) :
      ∃ (m : ), 1 < m a / b = (↑m)⁻¹
      noncomputable def smallestCollectionTo (b : ) :

      Write $$N(b) = max_{1 \leq a < b} N(a, b)$$.

      Equations
      Instances For
        theorem erdos_304.variants.upper_1950 :
        (fun (b : ) => (smallestCollectionTo b)) =O[Filter.atTop] fun (b : ) => Real.log b / Real.log (Real.log b)

        In 1950, Erdős [Er50c] proved the upper bound $$N(b) \ll \log b / \log \log b$$. [Er50c] Erdős, P., Az ${1}/{x_1} + {1}/{x_2} + \ldots + {1}/{x_n} =A/B$ egyenlet eg'{E}sz sz'{A}m'{u} megold'{A}sairól. Mat. Lapok (1950), 192-210.

        In 1950, Erdős [Er50c] proved the lower bound $$\log \log b \ll N(b)$$. [Er50c] Erdős, P., Az ${1}/{x_1} + {1}/{x_2} + \ldots + {1}/{x_n} =A/B$ egyenlet eg'{E}sz sz'{A}m'{u} megold'{A}sairól. Mat. Lapok (1950), 192-210.

        theorem erdos_304.variants.upper_1985 :
        (fun (b : ) => (smallestCollectionTo b)) =O[Filter.atTop] fun (b : ) => (Real.log b)

        In 1985 Vose [Vo85] proved the upper bound $$N(b) \ll \sqrt{\log b}$$. [Vo85] Vose, Michael D., Egyptian fractions. Bull. London Math. Soc. (1985), 21-24.

        theorem upper_bound :
        ((fun (b : ) => (smallestCollectionTo b)) =O[Filter.atTop] fun (b : ) => Real.log (Real.log b)) sorry

        Is it true that $$N(b) \ll \log \log b$$?