Erdős Problem 295 #
Reference: erdosproblems.com/295
Let $k(N)$ denote the smallest $k$ such that there exists $N ≤ n_1 < ⋯ < n_k$ with $\frac 1 {n_1} + ... + \frac 1 {n_k} = 1$
Is it true that $\lim_{N→∞} k(N) - (e - 1)N = ∞$?
Reference: erdosproblems.com/295
Let $k(N)$ denote the smallest $k$ such that there exists $N ≤ n_1 < ⋯ < n_k$ with $\frac 1 {n_1} + ... + \frac 1 {n_k} = 1$
Is it true that $\lim_{N→∞} k(N) - (e - 1)N = ∞$?