Documentation

FormalConjectures.ErdosProblems.«295»

Erdős Problem 295 #

Reference: erdosproblems.com/295

theorem Erdos295.exists_k (N : ) :
∃ (k : ) (n : Fin k.succ), (∀ (i : Fin k.succ), N n i) StrictMono n i : Fin k.succ, 1 / (n i) = 1

Helper lemma: for each $N$, there exists $k$ and $n_1 < ... < n_k$ such that $N ≤ n_1 < ⋯ < n_k$ with $\frac 1 {n_1} + ... + \frac 1 {n_k} = 1$.

@[reducible, inline]
noncomputable abbrev Erdos295.k (N : ) :

Let $k(N)$ denote the smallest $k$ such that there exists $N ≤ n_1 < ⋯ < n_k$ with $\frac 1 {n_1} + ... + \frac 1 {n_k} = 1$.

Equations
Instances For
    theorem Erdos295.erdos_295 :
    Filter.Tendsto (fun (N : ) => (k N) - (Real.exp 1 - 1) * N) Filter.atTop Filter.atTop sorry

    Let $k(N)$ denote the smallest $k$ such that there exists $N ≤ n_1 < ⋯ < n_k$ with $\frac 1 {n_1} + ... + \frac 1 {n_k} = 1$

    Is it true that $\lim_{N \to \infty} k(N) - (e - 1)N = \infty$?

    theorem Erdos295.erdos_295.variants.erdos_straus :
    C > 0, O > 0, ∀ᶠ (N : ) in Filter.atTop, (k N) - (Real.exp 1 - 1) * N Set.Ioc (-C) (O * N / Real.log N)

    Erdős and Straus have proved the existence of some constant $c>0$ such that $-c < k(N)-(e-1)N \ll \frac N {\log N}$