Documentation

FormalConjectures.ErdosProblems.«289»

Erdős Problem 289 #

Reference: erdosproblems.com/289

theorem erdos_289 :
(∀ᶠ (k : ) in Filter.atTop, ∃ (I : Fin kFinset ), (∀ (i : Fin k), 2 (I i).card ∃ (a : ) (b : ), 0 < a I i = Finset.Icc a b) i : Fin k, nI i, (↑n)⁻¹ = 1) sorry

Is it true that, for all sufficiently large $k$, there exists finite intervals $I_1, \dotsc, I_k \subset \mathbb{N}$ with $|I_i| \geq 2$ for $1 \leq i \leq k$ such that $$ 1 = \sum_{i=1}^k \sum_{n \in I_i} \frac{1}{n}. $$