Documentation

FormalConjectures.ErdosProblems.«285»

Erdős Problem 285 #

Reference: erdosproblems.com/285

theorem erdos_285 (f : ) (S : Set ) (hS : S = {k : | ∃ (n : Fin k.succ), StrictMono n 0Set.range n 1 = i : Fin k.succ, 1 / (n i)}) (h : kS, IsLeast {x : | ∃ (n : Fin k.succ) (_ : StrictMono n) (_ : 0Set.range n) (_ : 1 = i : Fin k.succ, 1 / (n i)), n (Fin.last k) = x} (f k)) :
(∃ (o : ) (_ : Filter.Tendsto o Filter.atTop (nhds 0)), kS, (f k) = (1 + o k) * Real.exp 1 / (Real.exp 1 - 1) * (k + 1)) True

Let $f(k)$ be the minimal value of $n_k$ such that there exist $n_1 < n_2 < \cdots < n_k$ with $$ 1 = \frac{1}{n_1} + \cdots + \frac{1}{n_k}. $$ Is it true that $$ f(k) = (1 + o(1)) \frac{e}{e - 1} k ? $$

Proved by Martin [Ma00].

[Ma00] Martin, Greg, Denser Egyptian fractions. Acta Arith. (2000), 231-260.

theorem erdos_285.variants.lb (f : ) (S : Set ) (hS : S = {k : | ∃ (n : Fin k.succ), StrictMono n 0Set.range n 1 = i : Fin k.succ, 1 / (n i)}) (h : kS, IsLeast {x : | ∃ (n : Fin k.succ) (_ : StrictMono n) (_ : 0Set.range n) (_ : 1 = i : Fin k.succ, 1 / (n i)), n (Fin.last k) = x} (f k)) :
∃ (o : ) (_ : Filter.Tendsto o Filter.atTop (nhds 0)), kS, (1 + o k) * Real.exp 1 / (Real.exp 1 - 1) * (k + 1) (f k)

It is trivial that $f(k)\geq (1 + o(1)) \frac{e}{e - 1}k$.