Documentation

FormalConjectures.ErdosProblems.«267»

Erdős Problem 267 #

Reference: erdosproblems.com/267

theorem erdos_267 :
(∀ (n : ), c > 1, StrictMono n(∀ (k : ), c (n (k + 1)) / (n k))Irrational (∑' (k : ), 1 / (Nat.fib (n k)))) sorry

Let $F_1=F_2=1$ and $F_{n+1} = F_n + F_{n−1}$ be the Fibonacci sequence. Let $n_1 < n_2 < ...$ be an infinite sequence with $\frac{n_{k+1}}{n_k} ≥ c > 1$. Must $\sum_k \frac 1 {F_{n_k}}$ be irrational?

theorem erdos_267.variants.generalisation_ratio_limit_to_infinity :
(∀ (n : ), StrictMono nFilter.Tendsto (fun (k : ) => (n (k + 1)) / k.succ) Filter.atTop Filter.atTopIrrational (∑' (k : ), 1 / (Nat.fib (n k)))) sorry

Let $F_1=F_2=1$ and $F_{n+1} = F_n + F_{n−1}$ be the Fibonacci sequence. Let $n_1 < n_2 < ...$ be an infinite sequence with $\frac {n_k}{k} → ∞$. Must $\sum_k \frac 1 {F_{n_k}}$ be irrational?

Good [Go74] and Bicknell and Hoggatt [BiHo76] have shown that $\sum_n \frac 1 {F_{2^n}}$ is irrational.

Ref:

  • [Go74] Good, I. J., A reciprocal series of Fibonacci numbers
  • [BiHo76] Hoggatt, Jr., V. E. and Bicknell, Marjorie, A reciprocal series of Fibonacci numbers with subscripts $2\sp{n}k$

The sum $\sum_n \frac 1 {F_{n}}$ itself was proved to be irrational by André-Jeannin.

Ref: André-Jeannin, Richard, Irrationalité de la somme des inverses de certaines suites récurrentes.