Documentation

FormalConjectures.ErdosProblems.«26»

Erdős Problem 26 #

References:

def Erdos26.IsThick {ι : Type u_1} (A : ι) :

A sequence of naturals $(a_i)$ is thick if their sum of reciprocals diverges: $$ \sum_i \frac{1}{a_i} = \infty $$

Equations
Instances For
    theorem Erdos26.not_isThick_of_finite {ι : Type u_1} [Finite ι] (A : ι) :
    theorem Erdos26.not_isThick_of_geom_one_lt (r : ) (hr : r > 1) :
    ¬IsThick fun (n : ) => r ^ n
    theorem Erdos26.isThick_const {ι : Type u_1} [Infinite ι] (r : ) (h : r > 0) :
    IsThick fun (x : ι) => r
    def Erdos26.MultiplesOf {ι : Type u_1} (A : ι) :

    The set of multiples of a sequence $(a_i)$ is $\{na_i | n \in \mathbb{N}, i\}$.

    Equations
    Instances For
      theorem Erdos26.multiplesOf_eq_univ {ι : Type u_1} (A : ι) (h : 1 Set.range A) :
      def Erdos26.IsBehrend {ι : Type u_1} (A : ι) :

      A sequence of naturals $(a_i)$ is Behrend if almost all integers are a multiple of some $a_i$. In other words, if the set of multiples has natural density $1$.

      Equations
      Instances For
        def Erdos26.IsWeaklyBehrend {ι : Type u_1} (A : ι) (ε : ) :

        A sequence of naturals $(a_i)$ is weakly Behrend with respect to $\varepsilon \in \mathbb{R}$ if at least $1 - \varepsilon$ density of all numbers are a multiple of $A$.

        Equations
        Instances For
          theorem Erdos26.isBehrend_of_contains_one {ι : Type u_1} (A : ι) (h : 1 Set.range A) :
          theorem Erdos26.isWeaklyBehrend_of_ge_one {ι : Type u_1} (A : ι) {ε : } ( : 1 ε) :
          theorem Erdos26.not_isWeaklyBehrend_of_neg {ι : Type u_1} (A : ι) {ε : } ( : ε < 0) :
          theorem Erdos26.erdos_26 (A : ) (hA : StrictMono A) (h : IsThick A) :
          (∃ (k : ), IsBehrend fun (x : ) => A x + k) sorry

          Let $A\subset\mathbb{N}$ be infinite such that $\sum_{a \in A} \frac{1}{a} = \infty$. Must there exist some $k\geq 1$ such that almost all integers have a divisor of the form $a+k$ for some $a\in A$?

          theorem Erdos26.erdos_26.variants.rusza :
          ∃ (A : ), StrictMono A ¬IsThick A ∀ (k : ), ¬IsBehrend fun (x : ) => A x + k

          If we allow for $\sum_{a\in A} \frac{1}{a} < \infty$ then Rusza has found a counter-example.

          theorem Erdos26.erdos_26.variants.tenenbaum (A : ) (hA : StrictMono A) (h : IsThick A) :
          (∀ ε > 0, ∃ (k : ), IsWeaklyBehrend (fun (x : ) => A x + k) ε) sorry

          Tenenbaum asked the weaker variant where for every $\epsilon>0$ there is some $k=k(\epsilon)$ such that at least $1-\epsilon$ density of all integers have a divisor of the form $a+k$ for some $a\in A$.