Erdős Problem 258 #
Reference: erdosproblems.com/258
theorem
erdos_258 :
(∀ (a : ℕ → ℕ),
(∀ (n : ℕ), a n ≠ 0) →
Filter.Tendsto a Filter.atTop Filter.atTop →
Irrational (∑' (n : ℕ), ↑(n + 1).divisors.card / ↑(∏ i ∈ Finset.Icc 1 n, a i))) ↔ sorry
Let $a_n \to \infty$ be a sequence of non-zero natural numbers. Is $\sum_n \frac{d(n)}{(a_1 ... a_n)}$ irrational, where $d(n)$ is the number of divisors of $n$?
theorem
erdos_258.variants.Monotone :
(∀ (a : ℕ → ℤ),
(∀ (n : ℕ), a n ≠ 0) →
_root_.Monotone a →
Filter.Tendsto a Filter.atTop Filter.atTop →
Irrational (∑' (n : ℕ), ↑(n + 1).divisors.card / ↑(∏ i ∈ Finset.Icc 1 n, a i))) ↔ True
Let $a_n \to \infty$ be a monotone sequence of non-zero natural numbers. Is $\sum_n \frac{d(n)}{(a_1 ... a_n)}$ irrational, where $d(n)$ is the number of divisors of $n$?
Solution: True (proved by Erdős and Straus, see Erdős Problems website).