Documentation

FormalConjectures.ErdosProblems.«258»

Erdős Problem 258 #

Reference: erdosproblems.com/258

theorem erdos_258 :
(∀ (a : ), (∀ (n : ), a n 0)Filter.Tendsto a Filter.atTop Filter.atTopIrrational (∑' (n : ), (n + 1).divisors.card / (∏ iFinset.Icc 1 n, a i))) sorry

Let $a_n \to \infty$ be a sequence of non-zero natural numbers. Is $\sum_n \frac{d(n)}{(a_1 ... a_n)}$ irrational, where $d(n)$ is the number of divisors of $n$?

theorem erdos_258.variants.Monotone :
(∀ (a : ), (∀ (n : ), a n 0)_root_.Monotone aFilter.Tendsto a Filter.atTop Filter.atTopIrrational (∑' (n : ), (n + 1).divisors.card / (∏ iFinset.Icc 1 n, a i))) True

Let $a_n \to \infty$ be a monotone sequence of non-zero natural numbers. Is $\sum_n \frac{d(n)}{(a_1 ... a_n)}$ irrational, where $d(n)$ is the number of divisors of $n$?

Solution: True (proved by Erdős and Straus, see Erdős Problems website).

theorem erdos_258.variants.Constant :
(∀ t2, Irrational (∑' (n : ), (n + 1).divisors.card / t ^ n)) True

Is $\sum_n \frac{d(n)}{t^n}$ irrational, where $t ≥ 2$ is an integer.

Solution: True (proved by Erdős, see Erdős Problems website)