Erdős Problem 252 #
References:
- erdosproblems.com/252
- [ErSt71] Erdös, P., and E. G. Straus. "Some number theoretic results." Pacific J. Math 36 (1971): 635-646.
- [ErSt74] Erdős, Paul, and Ernst Straus. "On the irrationality of certain series." Pacific journal of mathematics 55.1 (1974): 85-92.
- [ErKa54] P. Erdős, M. Kac, Amer. Math. Monthly 61 (1954), Problem 4518.
- [ScPu06] Schlage-Puchta, J. C., The irrationality of a number theoretical series. Ramanujan J. (2006), 455-460.
- [FLC07] Friedlander, J. B. and Luca, F. and Stoiciu, M., On the irrationality of a divisor function series. Integers (2007).
- [Pr22] Pratt, K., The irrationality of a divisor function series of Erdős and Kac. arXiv:2209.11124 (2022).
theorem
Erdos252.erdos_252_0 :
Irrational (∑' (n : ℕ), ↑((ArithmeticFunction.sigma 0) n) / ↑n.factorial)
∑ σ 0 n / n! is irrational. This is proved in [ErSt71].
theorem
Erdos252.erdos_252_1 :
Irrational (∑' (n : ℕ), ↑((ArithmeticFunction.sigma 1) n) / ↑n.factorial)
∑ σ 1 n / n! is irrational. This is proved in [ErSt74].
theorem
Erdos252.erdos_252_2 :
Irrational (∑' (n : ℕ), ↑((ArithmeticFunction.sigma 2) n) / ↑n.factorial)
∑ σ 2 n / n! is irrational. This is proved in [ErKa54].
theorem
Erdos252.erdos_252_3 :
Irrational (∑' (n : ℕ), ↑((ArithmeticFunction.sigma 3) n) / ↑n.factorial)
∑ σ 3 n / n! is irrational. This is proved in [ScPu06] and [FLC07].
theorem
Erdos252.erdos_252_4 :
Irrational (∑' (n : ℕ), ↑((ArithmeticFunction.sigma 4) n) / ↑n.factorial)
∑ σ 4 n / n! is irrational. This is proved in [Pr22].
For a fixed k ≥ 5, is ∑ σ k n / n! irrational?.
theorem
Erdos252.erdos_252.schinzel
(hs :
∀ (fs : Finset (Polynomial ℤ)),
(∀ f ∈ fs, BunyakovskyCondition f) →
SchinzelCondition fs → Infinite ↑{n : ℤ | ∀ f ∈ fs, Prime (Polynomial.eval n f).natAbs})
(k : ℕ)
:
Irrational (∑' (n : ℕ), ↑((ArithmeticFunction.sigma k) n) / ↑n.factorial)
If Schinzel's conjecture is true, then ∑ σ k n / n! is irrational for all k. This is proved
in [ScPu06].
theorem
Erdos252.erdos_252.prime_tuples
{k : ℕ}
(hk : 4 ≤ k)
(hp :
∀ (a : Fin k → ℕ+) (b : Fin k → ℕ),
(∀ (p : ℕ), Nat.Prime p → ∃ (n : ℕ), ¬p ∣ ∏ i : Fin k, (↑(a i) * n + b i)) →
{n : ℕ | ∀ (i : Fin k), Nat.Prime (↑(a i) * n + b i)}.Infinite)
:
Irrational (∑' (n : ℕ), ↑((ArithmeticFunction.sigma k) n) / ↑n.factorial)
If the prime k-tuples conjecture is true, then ∑ σ k n / n! is irrational. This is proved
in [FLC07].