Documentation

FormalConjectures.ErdosProblems.«252»

Erdős Problem 252 #

References:

∑ σ 0 n / n! is irrational. This is proved in [ErSt71].

∑ σ 1 n / n! is irrational. This is proved in [ErSt74].

∑ σ 2 n / n! is irrational. This is proved in [ErKa54].

∑ σ 3 n / n! is irrational. This is proved in [ScPu06] and [FLC07].

∑ σ 4 n / n! is irrational. This is proved in [Pr22].

theorem Erdos252.erdos_252_ge_5 :
sorry k5, Irrational (∑' (n : ), ((ArithmeticFunction.sigma k) n) / n.factorial)

For a fixed k ≥ 5, is ∑ σ k n / n! irrational?.

theorem Erdos252.erdos_252.schinzel (hs : ∀ (fs : Finset (Polynomial )), (∀ ffs, BunyakovskyCondition f)SchinzelCondition fsInfinite {n : | ffs, Prime (Polynomial.eval n f).natAbs}) (k : ) :

If Schinzel's conjecture is true, then ∑ σ k n / n! is irrational for all k. This is proved in [ScPu06].

theorem Erdos252.erdos_252.prime_tuples {k : } (hk : 4 k) (hp : ∀ (a : Fin kℕ+) (b : Fin k), (∀ (p : ), Nat.Prime p∃ (n : ), ¬p i : Fin k, ((a i) * n + b i)){n : | ∀ (i : Fin k), Nat.Prime ((a i) * n + b i)}.Infinite) :

If the prime k-tuples conjecture is true, then ∑ σ k n / n! is irrational. This is proved in [FLC07].