Documentation

FormalConjectures.ErdosProblems.«25»

Erdős Problem 25: Logarithmic density of size-dependent congruences #

Let $n_1 < n_2 < \dots$ be an arbitrary sequence of integers, each with an associated residue class $a_i \pmod{n_i}$. Let $A$ be the set of integers $n$ such that for every $i$ either $n < n_i$ or $n \not\equiv a_i \pmod{n_i}$. Must the logarithmic density of $A$ exist?

Reference: erdosproblems.com/25

theorem Erdos25.erdos_25 :
sorry ∀ (seq_n : ) (seq_a : ), (∀ (i : ), 0 < seq_n i)StrictMono seq_n∃ (d : ), {x : | ∀ (i : ), x < (seq_n i) ¬x seq_a i [ZMOD (seq_n i)]}.HasLogDensity d

Erdős Problem 25

Let $n_1 < n_2 < \dots$ be an arbitrary sequence of integers, each with an associated residue class $a_i \pmod{n_i}$. Let $A$ be the set of integers $n$ such that for every $i$ either $n < n_i$ or $n \not\equiv a_i \pmod{n_i}$. Must the logarithmic density of $A$ exist?