Documentation

FormalConjectures.ErdosProblems.«248»

Erdős Problem 248 #

Reference: erdosproblems.com/248

theorem Erdos248.erdos_248 :
(∃ C > 0, {n : | k1, (ArithmeticFunction.cardDistinctFactors (n + k)) C * k}.Infinite) sorry

Are there infinitely many $n$ such that $\omega(n + k) \ll k$ for all $k \geq 1$? Here $\omega(n)$ is the number of distinct prime divisors of $n$.