Erdős Problem 247 #
Reference: erdosproblems.com/247
theorem
erdos_247 :
(∀ (n : ℕ → ℕ),
StrictMono n →
Filter.limsup (fun (k : ℕ) => ↑(n k) / ↑k.succ) Filter.atTop = ⊤ → Transcendental ℚ (∑' (k : ℕ), 1 / 2 ^ n k)) ↔ sorry
Let $n_1 < n_2 < \cdots$ be a sequence of integers such that $$ \limsup \frac{n_k}{k} = \infty. $$ Is $$ \sum_{k=1}^{\infty} \frac{1}{2^{n_k}} $$ transcendental?
theorem
erdos_247.variants.strong_condition
(n : ℕ → ℕ)
(hn : StrictMono n)
(h : ∀ t ≥ 1, Filter.limsup (fun (k : ℕ) => ↑(↑(n k) / ↑k.succ ^ t)) Filter.atTop = ⊤)
:
Erdős proved the answer is yes under the stronger condition that $\limsup \frac{n_k}{k^t} = \infty$ for all $t\geq 1$.
[ErGr80] Erdős, P. and Graham, R., Old and new problems and results in combinatorial number theory. Monographies de L'Enseignement Mathematique (1980).