Documentation

FormalConjectures.ErdosProblems.«247»

Erdős Problem 247 #

Reference: erdosproblems.com/247

theorem erdos_247 :
(∀ (n : ), StrictMono nFilter.limsup (fun (k : ) => (n k) / k.succ) Filter.atTop = Transcendental (∑' (k : ), 1 / 2 ^ n k)) sorry

Let $n_1 < n_2 < \cdots$ be a sequence of integers such that $$ \limsup \frac{n_k}{k} = \infty. $$ Is $$ \sum_{k=1}^{\infty} \frac{1}{2^{n_k}} $$ transcendental?

theorem erdos_247.variants.strong_condition (n : ) (hn : StrictMono n) (h : t1, Filter.limsup (fun (k : ) => ↑((n k) / k.succ ^ t)) Filter.atTop = ) :
Transcendental (∑' (k : ), 1 / 2 ^ n k)

Erdős proved the answer is yes under the stronger condition that $\limsup \frac{n_k}{k^t} = \infty$ for all $t\geq 1$.

[ErGr80] Erdős, P. and Graham, R., Old and new problems and results in combinatorial number theory. Monographies de L'Enseignement Mathematique (1980).