Erdős Problem 245 #
Reference: erdosproblems.com/245
Let $A\subseteq\mathbb{N}$ be an infinite set such that $|A\cap \{1, ..., N\}| = o(N)$. Is it true that $$ \limsup_{N\to\infty}\frac{|(A + A)\cap \{1, ..., N\}|}{|A \cap \{1, ..., N\}|} \geq 3? $$
The answer is yes, proved by Freiman [Fr73].
[Fr73] Fre\u{\i}man, G. A., Foundations of a structural theory of set addition. (1973), vii+108.
Let $A\subseteq\mathbb{N}$ be an infinite set such that $|A\cap \{1, ..., N\}| = o(N)$. Determine whether there exists a limit to $$ \frac{|(A + A)\cap \{1, ..., N\}|}{|A \cap \{1, ..., N\}|} $$ as $N\to\infty$.
Let $A\subseteq\mathbb{N}$ be an infinite set such that $|A\cap \{1, ..., N\}| = o(N)$. Then $$ \limsup_{N\to\infty}\frac{|(A + A)\cap \{1, ..., N\}|}{|A \cap \{1, ..., N\}|} \geq 2. $$