Documentation

FormalConjectures.ErdosProblems.«244»

Erdős Problem 244 #

Reference: erdosproblems.com/244

theorem erdos_244 :
(∀ C > 1, {x : | ∃ (p : ) (k : ) (_ : Nat.Prime p), p + C ^ k⌋₊ = x}.HasPosDensity) sorry

Let $C > 1$. Does the set of integers of the form $p + \lfloor C^k \rfloor$, for some prime $p$ and $k\geq 0$, have density $>0$?

theorem erdos_244.variants.Romanoff {C : } (hC : 1 < C) {α : } (h : {x : | ∃ (p : ) (k : ) (_ : Nat.Prime p), p + C ^ k = x}.HasDensity α) :
0 < α

Romanoff [Ro34] proved that the answer is yes if $C$ is an integer.

[Ro34] Romanoff, N. P., Über einige Sätze der additiven Zahlentheorie. Math. Ann. (1934), 668-678.