Documentation

FormalConjectures.ErdosProblems.«242»

Erdős Problem 242 #

Reference: erdosproblems.com/242

theorem erdos_242 (n : ) (hn : 2 < n) :
∃ (x : ) (y : ) (z : ), 1 x x < y y < z 4 / n = 1 / x + 1 / y + 1 / z

For every $n>2$ there exist distinct integers $1 ≤ x < y < z$ such that $\frac 4 n = \frac 1 x + \frac 1 y + \frac 1 z$.

theorem erdos_242_schinzel_generalization (a : ) (ha : 0 < a) :
∀ᶠ (n : ) in Filter.atTop, ∃ (x : ) (y : ) (z : ), 1 x x < y y < z a / n = 1 / x + 1 / y + 1 / z

For any fixed $a$, if $n$ is sufficiently large in terms of $a$ then there exist distinct integers $1 ≤ x < y < z$ such that $\frac a n = \frac 1 x + \frac 1 y + \frac 1 z$.