Documentation

FormalConjectures.ErdosProblems.«238»

Erdős Problem 238 #

Reference: erdosproblems.com/238

theorem Erdos238.erdos_238 :
sorry c₁ > 0, c₂ > 0, ∀ᶠ (x : ) in Filter.atTop, ∃ (k : ), c₁ * Real.log x < k ∃ (f : Fin k) (m : ), (∀ (i : Fin k), (f i) x f i = Nat.nth Nat.Prime (m + i)) ∀ (i : Fin (k - 1)), c₂ < primeGap (m + i)

Let c₁, c₂ > 0. Is it true that for any sufficiently large x, there exists more than c₁ * log x many consecutive primes ≤ x such that the difference between any two is > c₂?

theorem Erdos238.erdos_238.variant (c₂ : ) :
c₂ > 0∀ᶠ (c₁ : ) in nhdsWithin 0 (Set.Ioi 0), ∀ᶠ (x : ) in Filter.atTop, ∃ (k : ), c₁ * Real.log x < k ∃ (f : Fin k) (m : ), (∀ (i : Fin k), (f i) x f i = Nat.nth Nat.Prime (m + i)) ∀ (i : Fin (k - 1)), c₂ < primeGap (m + i)

It is well-known that the conjecture above is true when c₁ is sufficiently small.