Documentation

FormalConjectures.ErdosProblems.«236»

Erdős Problem 236 #

Reference: erdosproblems.com/236

def Erdos236.f (n : ) :

$f(n)$ counts the number of solutions to $n=p+2^k$ for prime $p$ and $k\geq 0$.

Equations
Instances For
    theorem Erdos236.erdos_236 :
    (fun (n : ) => (f n)) =o[Filter.atTop] fun (n : ) => Real.log n

    Let $f(n)$ count the number of solutions to $n=p+2^k$ for prime $p$ and $k\geq 0$. Show that $f(n)=o(\log n)$.