Erdős Problem 208 #
Reference: erdosproblems.com/208
theorem
Erdos208.erdos_208.i :
(∀ ε > 0, (fun (n : ℕ) => ↑(erdos208.s (n + 1)) - ↑(erdos208.s n)) ≪ fun (n : ℕ) => ↑(erdos208.s n) ^ ε) ↔ sorry
Let $s_1 < s_2 < \dots$ be the sequence of squarefree numbers. Is it true that for any $\epsilon > 0$ and large $n$, $s_{n+1} - s_n \ll_\epsilon s_n^\epsilon$?
theorem
Erdos208.erdos_208.ii :
(∃ (c : ℕ → ℝ),
c =o[Filter.atTop] 1 ∧ ∀ᶠ (n : ℕ) in Filter.atTop, ↑(erdos208.s (n + 1)) - ↑(erdos208.s n) ≤ (1 + c n) * (Real.pi ^ 2 / 6) * Real.log ↑(erdos208.s n) / Real.log (Real.log ↑(erdos208.s n))) ↔ sorry
Let $s_1 < s_2 < \dots$ be the sequence of squarefree numbers. Is it true that $s_{n + 1} - s_n \le (1 + o(1)) \cdot (\pi^2 / 6) \cdot \log (s_n) / \log (\log (s_n))$?
In [Er79] Erdős says perhaps $s_{n+1} - s_n \ll \log s_n$, but he is 'very doubtful'.
[Er79] Erdős, Paul, Some unconventional problems in number theory. Math. Mag. (1979), 67-70.