Documentation

FormalConjectures.ErdosProblems.«208»

Erdős Problem 208 #

Reference: erdosproblems.com/208

noncomputable def Erdos208.erdos208.s :

The sequence of squarefree numbers, denoted by s as in Erdős problem 208.

Equations
Instances For
    theorem Erdos208.erdos_208.i :
    (∀ ε > 0, (fun (n : ) => (erdos208.s (n + 1)) - (erdos208.s n)) fun (n : ) => (erdos208.s n) ^ ε) sorry

    Let $s_1 < s_2 < \dots$ be the sequence of squarefree numbers. Is it true that for any $\epsilon > 0$ and large $n$, $s_{n+1} - s_n \ll_\epsilon s_n^\epsilon$?

    theorem Erdos208.erdos_208.ii :
    (∃ (c : ), c =o[Filter.atTop] 1 ∀ᶠ (n : ) in Filter.atTop, (erdos208.s (n + 1)) - (erdos208.s n) (1 + c n) * (Real.pi ^ 2 / 6) * Real.log (erdos208.s n) / Real.log (Real.log (erdos208.s n))) sorry

    Let $s_1 < s_2 < \dots$ be the sequence of squarefree numbers. Is it true that $s_{n + 1} - s_n \le (1 + o(1)) \cdot (\pi^2 / 6) \cdot \log (s_n) / \log (\log (s_n))$?

    theorem Erdos208.erdos_208.variants.log_bound :
    (fun (n : ) => (erdos208.s (n + 1)) - (erdos208.s n)) fun (n : ) => Real.log (erdos208.s n)

    In [Er79] Erdős says perhaps $s_{n+1} - s_n \ll \log s_n$, but he is 'very doubtful'.

    [Er79] Erdős, Paul, Some unconventional problems in number theory. Math. Mag. (1979), 67-70.