Erdős Problem 208 #
Reference: erdosproblems.com/208
theorem
Erdos208.erdos_208.i :
(∀ ε > 0,
(fun (n : ℕ) => ↑(erdos208.s (n + 1)) - ↑(erdos208.s n)) =O[Filter.atTop] fun (n : ℕ) => ↑(erdos208.s n) ^ ε) ↔ sorry
Let $s_1 < s_2 < ⋯$ be the sequence of squarefree numbers. Is it true that for any $ϵ > 0$ and large $n$, $s_{n+1} − s_n ≪_ϵ s_n^ε$?
theorem
Erdos208.erdos_208.ii :
(∃ (c : ℕ → ℝ),
c =o[Filter.atTop] 1 ∧ ∀ᶠ (n : ℕ) in Filter.atTop, ↑(erdos208.s (n + 1)) - ↑(erdos208.s n) ≤ (1 + c n) * (Real.pi ^ 2 / 6) * Real.log ↑(erdos208.s n) / Real.log (Real.log ↑(erdos208.s n))) ↔ sorry
Let $s_1 < s_2 < ⋯$ be the sequence of squarefree numbers. Is it true that $s_{n + 1} - s_n ≤ (1 + o(1)) * (\pi^2 / 6) * log (s_n) / log (log (s_n))$?
theorem
Erdos208.erdos_208.variants.log_bound :
(fun (n : ℕ) => ↑(erdos208.s (n + 1)) - ↑(erdos208.s n)) =O[Filter.atTop] fun (n : ℕ) => Real.log ↑(erdos208.s n)
In [Er79] Erdős says perhaps $s_{n+1} − s_n ≪ log s_n$, but he is 'very doubtful'.
[Er79] Erdős, Paul, Some unconventional problems in number theory. Math. Mag. (1979), 67-70.