Documentation

FormalConjectures.ErdosProblems.«203»

Erdős Problem 203 #

Reference: erdosproblems.com/203

theorem Erdos203.erdos_203 :
(∃ (m : ), m.Coprime 6 ∀ (k l : ), ¬Nat.Prime (2 ^ k * 3 ^ l * m + 1)) sorry

Is there an integer $m$ with $(m, 6) = 1$ such that none of $2^k \cdot 3^\ell \cdot m + 1$ are prime, for any $k, \ell \ge 0$?