Documentation

FormalConjectures.ErdosProblems.«200»

Erdős Problem 200 #

Reference: erdosproblems.com/200

The length of the longest arithmetic progression of primes in $\{1,\ldots,n\}$.

Equations
Instances For
    theorem Erdos200.erdos_200 :
    ((fun (n : ) => (longestPrimeArithmeticProgressions n)) =o[Filter.atTop] fun (n : ) => Real.log n) sorry

    Does the longest arithmetic progression of primes in $\{1,\ldots,N\}$ have length $o(\log N)$?

    theorem Erdos200.erdos_200.variants.upper :
    ∃ (o : ) (_ : o =o[Filter.atTop] 1), ∀ (n : ), (longestPrimeArithmeticProgressions n) (1 + o n) * Real.log n

    It follows from the prime number theorem that such a progression has length $\leq(1+o(1))\log N$.