Documentation

FormalConjectures.ErdosProblems.«17»

Erdős Problem 17 #

Reference: erdosproblems.com/17

A prime $p$ is a cluster prime if every even natural number $n \le p - 3$ can be written as a difference of two primes $q_1 - q_2$ with $q_1, q_2 \le p$.

Equations
Instances For

    Erdős Problem 17. Are there infinitely many cluster primes?

    noncomputable def Erdos17.clusterPrimeCount (n : ) :

    The counting function of cluster primes $\le n$.

    Equations
    Instances For
      theorem Erdos17.erdos_17.variants.upper_BES {A : } (hA : 0 < A) :
      (fun (x : ) => (clusterPrimeCount x)) =O[Filter.atTop] fun (x : ) => x / Real.log x ^ A

      In 1999 Blecksmith, Erdős, and Selfridge [BES99] proved the upper bound $$\pi^{\mathcal{C}}(x) \ll_A x(\log x)^{-A}$$ for every real $A > 0$.

      [BES99] Blecksmith, Richard and Erd\H os, Paul and Selfridge, J. L., Cluster primes. Amer. Math. Monthly (1999), 43--48.

      theorem Erdos17.erdos_17.variants.upper_Elsholtz :
      ∃ (C : ), 0 < C cSet.Ioo 0 (1 / 8), Asymptotics.IsBigOWith C Filter.atTop (fun (x : ) => (clusterPrimeCount x)) fun (x : ) => x * Real.exp (-c * Real.log (Real.log x) ^ 2)

      In 2003, Elsholtz [El03] refined the upper bound to $$\pi^{\mathcal{C}}(x) \ll x\,\exp\!\bigl(-c(\log\log x)^2\bigr)$$ for every real $0 < c < 1/8$.

      [El03] Elsholtz, Christian, On cluster primes. Acta Arith. (2003), 281--284.

      $97$ is the smallest prime that is not a cluster prime.