Documentation

FormalConjectures.ErdosProblems.«158»

Erdős Problem 158 #

References:

def B2 (g : ) (A : Set ) :

A set A ⊆ ℕ is said to be a B₂[g] set if for all n, the equation a + a' = n, a ≤ a', a, a' ∈ A has at most g solutions. This is defined in [ESS94].

Equations
Instances For
    @[simp]
    theorem b2_one {A : Set } :
    B2 1 A IsSidon A

    A set is B₂[1] iff it is Sidon.

    theorem Erdos158.erdos_158.B22 :
    sorry ∀ (A : Set ), A.InfiniteB2 2 AFilter.liminf (fun (N : ) => (A Set.Iio N).ncard * N ^ (-1 / 2)) Filter.atTop = 0

    Let A be an infinite B₂[2] set. Must liminf |A ∩ {1, ..., N}| * N ^ (- 1 / 2) = 0?

    theorem Erdos158.erdos_158.isSidon' {A : Set } (hAinf : A.Infinite) (hAsid : IsSidon A) :
    Filter.liminf (fun (N : ) => ENNReal.ofReal ((A Set.Iio N).ncard * N ^ (-1 / 2) * Real.log N ^ (1 / 2))) Filter.atTop <

    Let A be an infinite Sidon set. Then liminf |A ∩ {1, ..., N}| * N ^ (- 1 / 2) * (log N) ^ (1 / 2) < ∞. This is proved in [ESS94].

    theorem Erdos158.erdos_158.isSidon {A : Set } (hAinf : A.Infinite) (hAsid : IsSidon A) :
    Filter.liminf (fun (N : ) => (A Set.Iio N).ncard * N ^ (-1 / 2)) Filter.atTop = 0

    As a corollary of erdos_158.isSidon', we can prove that liminf |A ∩ {1, ..., N}| * N ^ (- 1 / 2) = 0 for any infinite Sidon set A.