Erdős Problem 158 #
References:
- erdosproblems.com/158
- [ESS94] Erdős, P. and Sárközy, A. and Sós, T., On Sum Sets of Sidon Sets, I. Journal of Number Theory (1994), 329-347.
theorem
Erdos158.erdos_158.isSidon'
{A : Set ℕ}
(hAinf : A.Infinite)
(hAsid : IsSidon A)
:
Filter.liminf (fun (N : ℕ) => ENNReal.ofReal (↑(A ∩ Set.Iio N).ncard * ↑N ^ (-1 / 2) * Real.log ↑N ^ (1 / 2)))
Filter.atTop < ⊤
Let A be an infinite Sidon set. Then
liminf |A ∩ {1, ..., N}| * N ^ (- 1 / 2) * (log N) ^ (1 / 2) < ∞. This is proved in [ESS94].
As a corollary of erdos_158.isSidon', we can prove that
liminf |A ∩ {1, ..., N}| * N ^ (- 1 / 2) = 0 for any infinite Sidon set A.