Documentation

FormalConjectures.ErdosProblems.«155»

Erdős Problem 155 #

Reference: erdosproblems.com/155

@[reducible, inline]
noncomputable abbrev Erdos155.F (N : ) :

Let $F(N)$ be the size of the largest Sidon subset of $\{1, \dots, N\}$.

Equations
Instances For
    theorem Erdos155.erdos_155 :
    (∀ k1, ∀ᶠ (N : ) in Filter.atTop, F (N + k) F N + 1) sorry

    Is it true that for every $k \geq 1$ we have $$ F(N + k) \leq F(N) + 1 $$ for all sufficiently large $N$?