Documentation

FormalConjectures.ErdosProblems.«145»

Erdős Problem 145 #

Reference: erdosproblems.com/145

@[reducible, inline]
noncomputable abbrev Erdos145.s (n : ) :

Let $s_1 < s_2 < \cdots$ be the sequence of squarefree numbers.

Equations
Instances For
    @[reducible, inline]
    noncomputable abbrev Erdos145.A (x : ) :

    Let $A(x)$ denote the set of indices $n$ for which $s_n \leq x$.

    Equations
    Instances For
      theorem Erdos145.erdos_145 :
      (∀ α0, ∃ (β : ), Filter.Tendsto (fun (x : ) => 1 / x * nA x, ((s (n + 1)) - (s n)) ^ α) Filter.atTop (nhds β)) sorry

      Let $s_1 < s_2 < \cdots$ be the sequence of squarefree numbers. Is it true that, for any $\alpha\geq 0$, $$ \lim_{x\to\infty} \frac{1}{x}\sum_{s_n\leq x}(s_{n+1}-s_n)^\alpha $$ exists?

      theorem Erdos145.erdos_145.variants.le_two {α : } (hα : α Set.Icc 0 2) :
      ∃ (β : ), Filter.Tendsto (fun (x : ) => 1 / x * nA x, ((s (n + 1)) - (s n)) ^ α) Filter.atTop (nhds β)

      Erdős [Er51] proved this for all $0\leq \alpha\leq 2$.

      [Er51] Erdös, P., Some problems and results in elementary number theory. Publ. Math. Debrecen (1951), 103-109.

      theorem Erdos145.erdos_145.variants.le_three {α : } (hα : α Set.Icc 0 3) :
      ∃ (β : ), Filter.Tendsto (fun (x : ) => 1 / x * nA x, ((s (n + 1)) - (s n)) ^ α) Filter.atTop (nhds β)

      Hooley [Ho73] extended this to all $\alpha\leq 3$.

      [Ho73] Hooley, Christopher, On the intervals between consecutive terms of sequences. Proc. Symp. Pure Math, vol. 24, pp. 129-140. 1973.

      theorem Erdos145.erdos_145.variants.le_eleven_thirds {α : } (hα : α Set.Icc 0 (11 / 3)) :
      ∃ (β : ), Filter.Tendsto (fun (x : ) => 1 / x * nA x, ((s (n + 1)) - (s n)) ^ α) Filter.atTop (nhds β)

      Greaves, Harman, and Huxley [GHH97] showed that this is true for $\alpha\leq 11/3$.

      [GHH97] Greaves, G. R. H. and Harman, G. and Huxley, M. N., Sieve Methods, Exponential Sums, and their Applications in Number Theory. (1997).