Erdős Problem 143 #
Reference: erdosproblems.com/143
Let $A \subseteq (1, \infty)$ be a countably infinite set such that for all $x\neq y\in A$ and integers $k \geq 1$ we have $|kx - y| \geq 1$.
Equations
Instances For
theorem
erdos_143.parts.i :
(∀ (A : Set ℝ), WellSeparatedSet A → Filter.liminf (fun (x : ℝ) => ↑(A ∩ Set.Icc 1 x).ncard / x) Filter.atTop = 0) ↔ sorry
Does this imply that $$ \liminf \frac{|A \cap [1,x]|}{x} = 0? $$
theorem
erdos_143.parts.ii
(A : Set ℝ)
(h : WellSeparatedSet A)
:
∃ (s : ℝ), Filter.Tendsto (fun (n : ℕ) => ∑ x ∈ Finset.range n, 1 / (↑x * Real.log ↑x)) Filter.atTop (nhds s)
Or $$ \sum_{x \in A} \frac{1}{x \log x} < \infty, $$