Documentation

FormalConjectures.ErdosProblems.«143»

Erdős Problem 143 #

Reference: erdosproblems.com/143

Let $A \subseteq (1, \infty)$ be a countably infinite set such that for all $x\neq y\in A$ and integers $k \geq 1$ we have $|kx - y| \geq 1$.

Equations
Instances For
    theorem erdos_143.parts.i :
    (∀ (A : Set ), WellSeparatedSet AFilter.liminf (fun (x : ) => (A Set.Icc 1 x).ncard / x) Filter.atTop = 0) sorry

    Does this imply that $$ \liminf \frac{|A \cap [1,x]|}{x} = 0? $$

    theorem erdos_143.parts.ii (A : Set ) (h : WellSeparatedSet A) :
    ∃ (s : ), Filter.Tendsto (fun (n : ) => xFinset.range n, 1 / (x * Real.log x)) Filter.atTop (nhds s)

    Or $$ \sum_{x \in A} \frac{1}{x \log x} < \infty, $$