Documentation

FormalConjectures.ErdosProblems.«142»

Erdős Problem 142 #

Reference: erdosproblems.com/142

@[reducible, inline]
noncomputable abbrev Erdos142.r (k N : ) :
Equations
Instances For
    theorem Erdos142.erdos_142 (k : ) :
    (fun (N : ) => (r k N)) =Θ[Filter.atTop] sorry

    Prove an asymptotic formula for $r_k(N)$, the largest possible size of a subset of $\{1, \dots, N\}$ that does not contain any non-trivial $k$-term arithmetic progression.

    theorem Erdos142.erdos_142.variants.lower (k : ) (hk : 1 < k) :
    (fun (N : ) => (r k N)) =o[Filter.atTop] fun (N : ) => N / Real.log N

    Show that $r_k(N) = o_k(N / \log N)$, where $r_k(N)$ the largest possible size of a subset of $\{1, \dots, N\}$ that does not contain any non-trivial $k$-term arithmetic progression.

    theorem Erdos142.erdos_142.variants.upper (k : ) :
    (fun (N : ) => (r k N)) sorry

    Find functions $f_k$, such that $r_k(N) = O_k(f_k)$, where $r_k(N)$ the largest possible size of a subset of $\{1, \dots, N\}$ that does not contain any non-trivial $k$-term arithmetic progression.

    theorem Erdos142.erdos_142.variants.three :
    (fun (N : ) => (r 3 N)) =Θ[Filter.atTop] sorry

    Prove an asymptotic formula for $r_3(N)$, the largest possible size of a subset of $\{1, \dots, N\}$ that does not contain any non-trivial $3$-term arithmetic progression.