Erdős Problem 139 #
Reference: erdosproblems.com/139
Equations
- instInhabitedOfAddMonoid_formalConjectures = { default := 0 }
Equations
- IsArithmeticProgression l = ∃ (step : M), List.Chain' (fun (s t : M) => t = s + step) l
Instances For
noncomputable def
IsArithmeticProgression.step
{M : Type u_1}
[Add M]
{l : List M}
(hl : IsArithmeticProgression l)
:
M
Equations
- hl.step = Exists.choose hl
Instances For
theorem
IsArithmeticProgression.step_def
{M : Type u_1}
[Add M]
{l : List M}
(hl : IsArithmeticProgression l)
:
theorem
IsArithmeticProgression.step_unique
{M : Type u_1}
[AddCancelMonoid M]
{l : List M}
(hl : IsArithmeticProgression l)
(hl' : 1 < l.length)
(u : M)
(hu : List.Chain' (fun (s t : M) => t = s + u) l)
:
theorem
IsArithmeticProgression.step_zero
{M : Type u_1}
[AddMonoid M]
[Inhabited M]
{l : List M}
(hl : IsArithmeticProgression l)
(hl' : hl.step = 0)
:
@[simp]
theorem
IsArithmeticProgression_map_range
{M : Type u_1}
[AddCommMonoid M]
(a b : M)
(n : ℕ)
:
IsArithmeticProgression (List.map (fun (i : ℕ) => a + i • b) (List.range n))
Say a set A
is a k
-non-arithmetic subset if it contains non non-trivial
arithmetic progressions of length k
.
Equations
Instances For
@[reducible, inline]
Denote by $r_k(N)$ the size of the largest k-non-arithmetic subset of ${1,...,N}$
Equations
- r k N = (Finset.filter (fun (S : Finset ℤ) => NonArithmeticSubset k ↑S) (Finset.Icc 1 ↑N).powerset).sup Finset.card
Instances For
theorem
erdos_139
(k : ℕ)
(hk : 1 ≤ k)
:
Filter.Tendsto (fun (N : ℕ) => ↑(r k N) / ↑N) Filter.atTop (nhds 0)
Erdős Problem 139: Let $r_k(N)$ be the size of the largest subset of ${1,...,N}$ which does not contain a non-trivial $k$-step arithmetic progression. Prove that $r_k(N) = o(N)$.