Documentation

FormalConjectures.ErdosProblems.«139»

Erdős Problem 139 #

Reference: erdosproblems.com/139

def IsArithmeticProgression {M : Type u_1} [Add M] (l : List M) :
Equations
Instances For
    noncomputable def IsArithmeticProgression.step {M : Type u_1} [Add M] {l : List M} (hl : IsArithmeticProgression l) :
    M
    Equations
    Instances For
      theorem IsArithmeticProgression.step_unique {M : Type u_1} [AddCancelMonoid M] {l : List M} (hl : IsArithmeticProgression l) (hl' : 1 < l.length) (u : M) (hu : List.Chain' (fun (s t : M) => t = s + u) l) :
      u = hl.step
      theorem IsArithmeticProgression_map_range {M : Type u_1} [AddCommMonoid M] (a b : M) (n : ) :
      IsArithmeticProgression (List.map (fun (i : ) => a + i b) (List.range n))
      def NonArithmeticSubset {M : Type u_1} [AddCommMonoid M] (k : ) (A : Set M) :

      Say a set A is a k-non-arithmetic subset if it contains non non-trivial arithmetic progressions of length k.

      Equations
      Instances For
        @[reducible, inline]
        noncomputable abbrev r (k N : ) :

        Denote by $r_k(N)$ the size of the largest k-non-arithmetic subset of ${1,...,N}$

        Equations
        Instances For
          theorem erdos_139 (k : ) (hk : 1 k) :
          Filter.Tendsto (fun (N : ) => (r k N) / N) Filter.atTop (nhds 0)

          Erdős Problem 139: Let $r_k(N)$ be the size of the largest subset of ${1,...,N}$ which does not contain a non-trivial $k$-step arithmetic progression. Prove that $r_k(N) = o(N)$.