Documentation

FormalConjectures.ErdosProblems.«139»

Erdős Problem 139 #

Reference: erdosproblems.com/139

theorem Erdos139.erdos_139 (k : ) (hk : 1 k) :
Filter.Tendsto (fun (N : ) => (Erdos139.r✝ k N) / N) Filter.atTop (nhds 0)

Erdős Problem 139: Let $r_k(N)$ be the size of the largest subset of ${1,...,N}$ which does not contain a non-trivial $k$-term arithmetic progression. Prove that $r_k(N) = o(N)$.