Erdős Problem 139 #
Reference: erdosproblems.com/139
theorem
Erdos139.erdos_139
(k : ℕ)
(hk : 1 ≤ k)
:
Filter.Tendsto (fun (N : ℕ) => ↑(Erdos139.r✝ k N) / ↑N) Filter.atTop (nhds 0)
Erdős Problem 139: Let $r_k(N)$ be the size of the largest subset of ${1,...,N}$ which does not contain a non-trivial $k$-term arithmetic progression. Prove that $r_k(N) = o(N)$.