Documentation

FormalConjectures.ErdosProblems.«137»

Erdős Problem 137 #

References:

theorem Erdos137.erdos_137 :
(∀ k3, ∀ (n : ), ¬(∏ xFinset.Ioc n (n + k), x).Powerful) sorry

Let $k\geq 3$. Can the product of any $k$ consecutive integers $N$ ever be powerful? That is, must there always exist a prime $p\mid N$ such that $p^2\nmid N$?

theorem Erdos137.erdos_137.variants.perfect_power (k : ) (hk : k 2) (n x l : ) (hl : 2 l) :
xFinset.Ioc n (n + k), x x ^ l

Let $k\geq 2$. Erdős and Selfridge [ES75] proved that the product of any $k$ consecutive integers $N$ cannot be a perfect power.

[ES75] P. Erdös, J. L. Selfridge, "The product of consecutive integers is never a power", Illinois J. Math. 19(2): 292-301, 1975

theorem Erdos137.erdos_137.multiple_powerful_factors (m k : ) (hm : 0 < m) :
∃ (n₀ : ), n > n₀, ∃ (P : Finset ), P.card = k pP, Nat.Prime p p xFinset.Ioc m (m + n), x ¬p ^ 2 xFinset.Ioc m (m + n), x

Erdős [Er82c] conjectures that, if $m$, $k$ are fixed and $n$ sufficiently large, then there must be at least $k$ distict primes $p$ such that $p\mid m(m+1)\cdots (m+n)$ and yet $p^2$ does not divide the right hand side.

[Er82c] Erdős, Paul, "Miscellaneous problems in number theory". Congr. Numer. (1982), 25-45.,