Documentation

FormalConjectures.ErdosProblems.«124»

Erdős Problem 124 #

References:

theorem Erdos124.erdos_124 :
(∀ (k : ) (d : Fin k), (∀ (i : Fin k), 3 d i)StrictMono di : Fin k, 1 / ((d i) - 1) = 1∀ᶠ (n : ) in Filter.atTop, ∃ (c : Fin k) (a : Fin k), ∀ (i : Fin k), c i {0, 1} ∀ (i : Fin k), ((d i).digits (a i)).toFinset {0, 1} n = i : Fin k, c i * a i) sorry

Let $3\leq d_1 < d_2 < \cdots < d_k$ be integers such that $$\sum_{1\leq i\leq k}\frac{1}{d_i-1}\geq 1.$$ Can all sufficiently large integers be written as a sum of the shape $\sum_i c_ia_i$ where $c_i\in \{0, 1\}$ and $a_i$ has only the digits $0, 1$ when written in base $d_i$?

Conjectured by Burr, Erdős, Graham, and Li [BEGL96]