Erdős Problem 1108 #
Reference: erdosproblems.com/1108
For each $k \geq 2$, does the set $A = \left\{ \sum_{n\in S}n! : S\subset \mathbb{N}\text{ finite}\right\}$ of all finite sums of distinct factorials contain only finitely many $k$-th powers?
Does the set $A = \left\{ \sum_{n\in S}n! : S\subset \mathbb{N}\text{ finite}\right\}$ of all finite sums of distinct factorials contain only finitely many powerful numbers?