Documentation

FormalConjectures.ErdosProblems.«1104»

Erdős Problem 1104 #

Reference: https://www.erdosproblems.com/1104

noncomputable def Erdos1104.triangleFreeMaxChromatic (n : ) :

Maximum chromatic number of a triangle-free graph on n vertices.

Equations
Instances For
    theorem Erdos1104.erdos_1104_lower :
    ∃ (c₁ : ), 0 < c₁ c₁ 1 ∀ᶠ (n : ) in Filter.atTop, c₁ * n / (Real.log n) (triangleFreeMaxChromatic n)

    Lower bound (Hefty–Horn–King–Pfender 2025). There exists a constant $c_1 \in (0,1]$ such that, for sufficiently large $n$, $$ c_1 \sqrt{\frac{n}{\log n}} \le f(n), $$ where $f(n)$ denotes the maximum chromatic number of a triangle-free graph on $n$ vertices, formalized as triangleFreeMaxChromatic n.

    theorem Erdos1104.erdos_1104_upper :
    ∃ (c₂ : ), 2 c₂ ∀ᶠ (n : ) in Filter.atTop, (triangleFreeMaxChromatic n) c₂ * n / (Real.log n)

    Upper bound (Davies–Illingworth 2022). There exists a constant $c_2 \ge 2$ such that, for sufficiently large $n$, $$ f(n) \le c_2 \sqrt{\frac{n}{\log n}}, $$ where $f(n)$ denotes the maximum chromatic number of a triangle-free graph on $n$ vertices, formalized as triangleFreeMaxChromatic n.