Documentation

FormalConjectures.ErdosProblems.«1102»

Erdős Problem 1102 #

Reference: erdosproblems.com/1102

Property P : A set $A ⊆ ℕ $ has property P, if for all $n ≥ 1$ the set $ \{a ∈ A | n + a\text{ is squarefree}\}$ is finite.

Equations
Instances For

    Property Q : A set $A ⊆ ℕ $ has property Q, if the set $\{n ∈ ℕ | ∀ a ∈ A, n > a\text{ implies }n + a\text{ is squarefree}\}$ is infinite.

    Equations
    Instances For
      theorem Erdos1102.erdos_1102.density_zero_of_P (A : ) (h_inc : StrictMono A) (hP : HasPropertyP (Set.range A)) :
      Filter.Tendsto (fun (j : ) => (A j) / j) Filter.atTop Filter.atTop

      If A = {a₁ < a₂ < …} has property P, then A has natural density 0. Equivalently, (a_j / j) → ∞ as j → ∞.

      theorem Erdos1102.erdos_1102.exists_sequence_with_P (f : ) (h_inf : Filter.Tendsto f Filter.atTop Filter.atTop) (h_pos : ∀ (n : ), f n 0) :
      ∃ (A : ), StrictMono A HasPropertyP (Set.range A) ∀ (j : ), (A j) / j (f j)

      Conversely, for any function f : ℕ → ℕ that goes to infinity, there exists a strictly increasing sequence A = {a₁ < a₂ < …} with property P such that (a_j / j) ≤ f(j) for all j.

      theorem Erdos1102.erdos_1102.upper_density_Q (A : ) (h_inc : StrictMono A) (hQ : HasPropertyQ (Set.range A)) :
      (Filter.limsup (fun (j : ) => j / A j) Filter.atTop) 6 / Real.pi ^ 2

      Every sequence with property Q has upper density at most 6 / π^2.

      theorem Erdos1102.erdos_1102.lower_density_Q_exists :
      ∃ (A : ), StrictMono A (∀ (j : ), Squarefree (A j)) HasPropertyQ (Set.range A) Filter.Tendsto (fun (j : ) => j / (A j)) Filter.atTop (nhds (6 / Real.pi ^ 2))

      There exists an infinite sequence $A = {a₁ < a₂ < …} ⊂ \mathsf{SF}$ where $\mathsf{SF} := \mathbb{N} \setminus \bigcup_{p} p^{2}\mathbb{N}$, i.e. the set of squarefree numbers. The set A has property Q and natural density 6 / π^2. Equivalently, (j / a_j) → 6/π^2 as j → ∞.