Erdős Problem 1102 #
Reference: erdosproblems.com/1102
theorem
Erdos1102.erdos_1102.density_zero_of_P
(A : ℕ → ℕ)
(h_inc : StrictMono A)
(hP : HasPropertyP (Set.range A))
:
Filter.Tendsto (fun (j : ℕ) => ↑(A j) / ↑j) Filter.atTop Filter.atTop
If A = {a₁ < a₂ < …} has property P,
then A has natural density 0.
Equivalently, (a_j / j) → ∞ as j → ∞.
theorem
Erdos1102.erdos_1102.exists_sequence_with_P
(f : ℕ → ℕ)
(h_inf : Filter.Tendsto f Filter.atTop Filter.atTop)
(h_pos : ∀ (n : ℕ), f n ≠ 0)
:
∃ (A : ℕ → ℕ), StrictMono A ∧ HasPropertyP (Set.range A) ∧ ∀ (j : ℕ), ↑(A j) / ↑j ≤ ↑(f j)
Conversely, for any function f : ℕ → ℕ that goes to infinity,
there exists a strictly increasing sequence A = {a₁ < a₂ < …}
with property P such that (a_j / j) ≤ f(j) for all j.
theorem
Erdos1102.erdos_1102.upper_density_Q
(A : ℕ → ℕ)
(h_inc : StrictMono A)
(hQ : HasPropertyQ (Set.range A))
:
Every sequence with property Q has upper density at most 6 / π^2.
theorem
Erdos1102.erdos_1102.lower_density_Q_exists :
∃ (A : ℕ → ℕ),
StrictMono A ∧ (∀ (j : ℕ), Squarefree (A j)) ∧ HasPropertyQ (Set.range A) ∧ Filter.Tendsto (fun (j : ℕ) => ↑j / ↑(A j)) Filter.atTop (nhds (6 / Real.pi ^ 2))
There exists an infinite sequence $A = {a₁ < a₂ < …} ⊂ \mathsf{SF}$ where
$\mathsf{SF} := \mathbb{N} \setminus \bigcup_{p} p^{2}\mathbb{N}$, i.e. the set of
squarefree numbers. The set A has property Q and natural density 6 / π^2.
Equivalently, (j / a_j) → 6/π^2 as j → ∞.