Documentation

FormalConjectures.ErdosProblems.«1095»

Erdős Problem 1095 #

Reference: erdosproblems.com/1095

noncomputable def Erdos1095.g (k : ) :

Let $g(k)>k+1$ be maximal such that if $n\leq g(k)$ then $\binom{n}{k}$ is divisible by a prime $\leq k$. Estimate $g(k)$.

Equations
Instances For
    theorem Erdos1095.erdos_1095_lower_solved :
    c > 0, (fun (k : ) => Real.exp (c * Real.log k ^ 2)) =O[Filter.atTop] fun (k : ) => (g k)

    The current record is[g(k) \gg \exp(c(\log k)^2)]for some $c>0$, due to Konyagin Ko99b.

    theorem Erdos1095.erdos_1095_upper_conjecture :
    ∃ (f : ), Filter.Tendsto f Filter.atTop (nhds 0) ∀ (k : ), (g k) Real.exp (k ^ (1 + f k))

    Ecklund, Erdős, and Selfridge conjectured $g(k)\leq \exp(k^{1+o(1)})$ EES74

    theorem Erdos1095.erdos_1095_lower_conjecture :
    c > 0, ∀ (k : ), (g k) Real.exp (c * k / Real.log k)

    Erdős, Lacampagne, and Selfridge ELS93 write 'it is clear to every right-thinking person' that $g(k)\geq\exp(c\frac{k}{\log k})$ for some constant $c>0$.

    Sorenson, Sorenson, and Webster give heuristic evidence that [\log g(k) \asymp \frac{k}{\log k}.]