Documentation

FormalConjectures.ErdosProblems.«1085»

Erdős Problem 1085 #

Let f_d(n) be minimal such that, in any set of n points in ℝ^d, there exist at most f_d(n) pairs of points which are distance 1 apart. Estimate f_d(n).

Reference: erdosproblems.com/1085

noncomputable def Erdos1085.f (d n : ) :

The maximal number of pairs of points which are distance 1 apart that a set of n points in ℝ^d make.

Equations
Instances For
    theorem Erdos1085.erdos_1085_lower_d2 :
    c > 0, ∀ᶠ (n : ) in Filter.atTop, n ^ (1 + c / Real.log (Real.log n)) < (f 2 n)

    Erdős showed $f_2(n) > n^{1+c/\log\log n}$ for some $c > 0$.

    theorem Erdos1085.erdos_1085_upper_d2 :
    (fun (n : ) => (f 2 n)) =O[Filter.atTop] fun (n : ) => n ^ (4 / 3)

    Spencer, Szemerédi, and Trotter showed $f_2(n) = O(n^{4/3})$.

    theorem Erdos1085.erdos_1085_lower_d3 :
    (fun (n : ) => n ^ (4 / 3) * Real.log (Real.log n)) =O[Filter.atTop] fun (n : ) => (f 3 n)

    Erdős showed $f_3(n) = Ω(n^{4/3}\log\log n)$.

    theorem Erdos1085.erdos_1085_upper_d3 :
    sorry (fun (n : ) => (f 3 n)) =O[Filter.atTop] fun (n : ) => n ^ (4 / 3) * Real.log (Real.log n)

    Is the $n^{4/3}\log\log n$ lower bound in 3D also an upper bound?.

    theorem Erdos1085.erdos_1085_lower_d4_lenz {d : } (hd : 4 d) :
    ∃ (C : ), ∀ (n : ), ↑(d / 2 - 1) / (2 * ↑(d / 2)) * n ^ 2 - C (f d n)

    Lenz showed that, for $d \ge 4$, $f_d(n) \ge \frac{p - 1}{2p} n^2 - O(1)$ where $p = \lfloor\frac d2\rfloor$.

    theorem Erdos1085.erdos_1085_upper_d4_erdos {d : } (hd : 4 d) :
    ∃ (g : ), Filter.Tendsto g Filter.atTop (nhds 0) ∀ (n : ), (f d n) (↑(d / 2 - 1) / (2 * ↑(d / 2)) + g n) * n ^ 2

    Erdős showed that, for $d \ge 4$, $f_d(n) \le \left(\frac{p - 1}{2p} + o(1)\right) n^2$ where $p = \lfloor\frac d2\rfloor$.

    theorem Erdos1085.erdos_1085_upper_lower_d5_odd {d : } (hd : 5 d) (hd_odd : Odd d) :
    c₁ > 0, ∃ (c₂ : ), ∀ᶠ (n : ) in Filter.atTop, ↑(d / 2 - 1) / (2 * ↑(d / 2)) * n ^ 2 + c₁ * n ^ (4 / 3) (f d n) (f d n) ↑(d / 2 - 1) / ↑(d / 2) * n ^ 2 + c₂ * n ^ (4 / 3)

    Erdős and Pach showed that, for $d \ge 5$ odd, there exist constants $c_1(d), c_2(d) > 0$ such that $\frac{p - 1}{2p} n^2 - c_1 n^{4/3} ≤ f_d(n) \le \frac{p - 1}{2p} n^2 + c_2 n^{4/3}$ where $p = \lfloor\frac d2\rfloor$.