Documentation

FormalConjectures.ErdosProblems.«1080»

Erdős Problem 1080 #

Reference: erdosproblems.com/1080

def Erdos1080.IsBipartition {V : Type u_1} (G : SimpleGraph V) (X Y : Set V) :

IsBipartition G X Y means that X and Y form a bipartition of the vertices of G.

Equations
Instances For
    theorem Erdos1080.erdos_1080 :
    sorry c > 0, ∀ (V : Type) [inst : Fintype V] [Nonempty V] (G : SimpleGraph V) (X Y : Set V), IsBipartition G X YX.ncard = (Fintype.card V) ^ (2 / 3)⌋₊G.edgeSet.ncard c * (Fintype.card V)∃ (v : V) (walk : G.Walk v v), walk.IsCycle walk.length = 6

    Let $G$ be a bipartite graph on $n$ vertices such that one part has $\lfloor n^{2/3}\rfloor$ vertices. Is there a constant $c>0$ such that if $G$ has at least $cn$ edges then $G$ must contain a $C_6$?