Documentation

FormalConjectures.ErdosProblems.«1072»

Erdős Problem 1072 #

Reference: erdosproblems.com/1072

noncomputable def Erdos1072.f (p : ) :

For any prime $p$, let $f(p)$ be the least integer such that $f(p)! + 1 \equiv 0 \mod p$.

Equations
Instances For

    Is it true that there are infinitely many $p$ for which $f(p) = p − 1$?

    theorem Erdos1072.erdos_1072b :
    sorry P{p : | Nat.Prime p}, P.HasDensity 1 {p : | Nat.Prime p} Filter.Tendsto (fun (p : ) => (f p) / p) (Filter.atTopFilter.principal P) (nhds 0)

    Is it true that $f(p)/p \to 0$ for $p \to \infty$ in a density 1 subset of the primes?

    theorem Erdos1072.erdos_1072a.variants.littleo :
    (fun (x : ) => ({p : | Nat.Prime p f p = p - 1}.interIcc 0 x).ncard) =o[Filter.atTop] fun (x : ) => x / Real.log x

    Erdős, Hardy, and Subbarao [HaSu02], believed that the number of $p \le x$ for which $f(p)=p−1$ is $o(x/\log x)$.

    [HaSu02] Hardy, G. E. and Subbarao, M. V., A modified problem of Pillai and some related questions. Amer. Math. Monthly (2002), 554--559.