Documentation

FormalConjectures.ErdosProblems.«1071»

Erdős Problem 1071 #

References:

Two segments are disjoint if they only intersect at their endpoints (if at all).

Equations
Instances For
    theorem Erdos1071.erdos_1071a :
    True ∃ (S : Finset (EuclideanSpace (Fin 2) × EuclideanSpace (Fin 2))), (∀ segS, dist seg.1 seg.2 = 1 seg.1 0 Set.Icc 0 1 seg.1 1 Set.Icc 0 1 seg.2 0 Set.Icc 0 1 seg.2 1 Set.Icc 0 1) (↑S).Pairwise SegmentsDisjoint Maximal (fun (T : Finset (EuclideanSpace (Fin 2) × EuclideanSpace (Fin 2))) => (∀ segT, dist seg.1 seg.2 = 1 seg.1 0 Set.Icc 0 1 seg.1 1 Set.Icc 0 1 seg.2 0 Set.Icc 0 1 seg.2 1 Set.Icc 0 1) (↑T).Pairwise SegmentsDisjoint) S

    Can a finite set of disjoint unit segments in a unit square be maximal? Solved affirmatively by [Da85], who gave an explicit construction.

    theorem Erdos1071.erdos_1071b :
    sorry ∃ (R : Set (EuclideanSpace (Fin 2))) (S : Set (EuclideanSpace (Fin 2) × EuclideanSpace (Fin 2))), S.Countable S.Infinite Maximal (fun (T : Set (EuclideanSpace (Fin 2) × EuclideanSpace (Fin 2))) => (∀ segT, dist seg.1 seg.2 = 1 seg.1 R seg.2 R) T.Pairwise SegmentsDisjoint) S

    Is there a region $R$ with a maximal set of disjoint unit line segments that is countably infinite?