Erdős Problem 1071 #
References:
- erdosproblems.com/1071
- [Da85] Danzer, L., Some combinatorial and metric problems in geometry. Intuitive geometry (Siófok, 1985), 167-177.
Two segments are disjoint if they only intersect at their endpoints (if at all).
Equations
Instances For
theorem
Erdos1071.erdos_1071a :
True ↔ ∃ (S : Finset (EuclideanSpace ℝ (Fin 2) × EuclideanSpace ℝ (Fin 2))),
(∀ seg ∈ S,
dist seg.1 seg.2 = 1 ∧ seg.1 0 ∈ Set.Icc 0 1 ∧ seg.1 1 ∈ Set.Icc 0 1 ∧ seg.2 0 ∈ Set.Icc 0 1 ∧ seg.2 1 ∈ Set.Icc 0 1) ∧ (↑S).Pairwise SegmentsDisjoint ∧ Maximal
(fun (T : Finset (EuclideanSpace ℝ (Fin 2) × EuclideanSpace ℝ (Fin 2))) =>
(∀ seg ∈ T,
dist seg.1 seg.2 = 1 ∧ seg.1 0 ∈ Set.Icc 0 1 ∧ seg.1 1 ∈ Set.Icc 0 1 ∧ seg.2 0 ∈ Set.Icc 0 1 ∧ seg.2 1 ∈ Set.Icc 0 1) ∧ (↑T).Pairwise SegmentsDisjoint)
S
Can a finite set of disjoint unit segments in a unit square be maximal? Solved affirmatively by [Da85], who gave an explicit construction.
theorem
Erdos1071.erdos_1071b :
sorry ↔ ∃ (R : Set (EuclideanSpace ℝ (Fin 2))) (S : Set (EuclideanSpace ℝ (Fin 2) × EuclideanSpace ℝ (Fin 2))),
S.Countable ∧ S.Infinite ∧ Maximal
(fun (T : Set (EuclideanSpace ℝ (Fin 2) × EuclideanSpace ℝ (Fin 2))) =>
(∀ seg ∈ T, dist seg.1 seg.2 = 1 ∧ seg.1 ∈ R ∧ seg.2 ∈ R) ∧ T.Pairwise SegmentsDisjoint)
S
Is there a region $R$ with a maximal set of disjoint unit line segments that is countably infinite?