The set of $N$ such that any $N$ points in the plane, no three on a line, contain a convex $n$-gon.
Equations
- Erdos107.cardSet n = {N : ℕ | ∀ (pts : Finset (EuclideanSpace ℝ (Fin 2))), pts.card = N → EuclideanGeometry.NonTrilinear ↑pts → EuclideanGeometry.HasConvexNGon n ↑pts}
Instances For
The function $f(n)$ specified in erdos_107
.
Equations
- Erdos107.f n = sInf (Erdos107.cardSet n)
Instances For
Depending on details of definitions, the statement is false or trivial for $n < 3$.
Erdős and Szekeres proved the bounds $$ 2^{n-2} + 1 ≤ f(n) ≤ \binom{2n-4}{n-2} + 1 $$ ([ErSz60] and [ErSz35] respectively).
[ErSz60] Erdős, P. and Szekeres, G., On some extremum problems in elementary geometry. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. (1960/61), 53-62.
[ErSz35] Erdős, P. and Szekeres, G., A combinatorial problem in geometry. Compos. Math. (1935), 463-470.
The current best bound is due to Holmsen, Mojarrad, Pach, and Tardos [HMPT20], who prove $$ f(n) ≤ 2^{n+O(\sqrt{n\log n})}. $$
[HMPT20] Holmsen, Andreas F. and Mojarrad, Hossein Nassajian and Pach, János and Tardos, Gábor, Two extensions of the Erdős-Szekeres problem. J. Eur. Math. Soc. (JEMS) (2020), 3981-3995.