Documentation

FormalConjectures.ErdosProblems.«1062»

Erdős Problem 1062 #

Reference: erdosproblems.com/1062

A set A of positive integers is fork-free if no element divides two distinct other elements of A.

Equations
Instances For
    noncomputable def Erdos1062.f (n : ) :

    The extremal function from Erdős problem 1062: the largest size of a fork-free subset of {1,...,n}.

    Equations
    Instances For

      The interval [⌊n/3⌋, n] is fork-free, and therefore f n is at least ⌈2n / 3⌉.

      theorem Erdos1062.erdos_1062.lebensold_bounds :
      ∀ᶠ (n : ) in Filter.atTop, 0.6725 * n (f n) (f n) 0.6736 * n

      Lebensold proved that for large n, the function f n lies between 0.6725 n and 0.6736 n.

      theorem Erdos1062.erdos_1062.limit_density :
      (∃ (l : ), Filter.Tendsto (fun (n : ) => (f n) / n) Filter.atTop (nhds l) Irrational l) sorry

      Erdős asked whether the limiting density f n / n exists and, if so, whether it is irrational.