Documentation

FormalConjectures.ErdosProblems.«1056»

Erdős Problem 1056 #

Reference: erdosproblems.com/1056

def Erdos1056.AllModProdEqualsOne (p : ) {k : } (boundaries : Fin (k + 1)) :

The proposition that the modular product of a collection of consecutive interval equals $1$ modulo $p$, where intervals are defined by a function specifying the consecutive boundaries.

Equations
Instances For
    theorem Erdos1056.erdos_1056 :
    (∀ k2, ∃ (p : ) (_ : Nat.Prime p) (boundaries : Fin (k + 1)) (_ : StrictMono boundaries), AllModProdEqualsOne p boundaries) sorry

    Let $k ≥ 2$. Does there exist a prime $p$ and consecutive intervals $I_0,\dots,I_k$ such that $\prod\limits_{n{\in}I_i}n \equiv 1 \mod n$ for all $1 \le i \le k$?

    This is problem A15 in Guy's collection [Gu04], where he reports that in a letter in 1979 Erdős observed that $3 * 4 \equiv 5 * 6 * 7 \equiv 1 \mod 11$.

    Makowski [Ma83] found, for $k=3$: $2 * 3 * 4 * 5 \equiv 6 * 7 * 8 * 9 * 10 * 11 \equiv 12 * 13 * 14 * 15 \equiv 1 \mod 17$.

    theorem Erdos1056.noll_simmons :
    (∀ᶠ (k : ) in Filter.atTop, ∃ (p : ) (_ : Nat.Prime p) (Q : Fin k) (_ : StrictMono Q) (_ : ∀ (i : Fin k), Q i < p), ∀ (i j : Fin k), (Q i).factorial (Q j).factorial [MOD p]) sorry

    Noll and Simmons asked, more generally, whether there are solutions to $q_1! \equiv \dots \equiv q_k! \mod p$ for arbitrarily large $k$ (with $q_1 < \dots < q_k$).