Documentation

FormalConjectures.ErdosProblems.«1054»

Erdős Problem 1054 #

Reference: erdosproblems.com/1054

noncomputable def Erdos1054.f (n : ) :

Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$.

Equations
Instances For
    theorem Erdos1054.erdos_1054.parts.i :
    ((fun (n : ) => (f n)) =o[Filter.atTop] fun (n : ) => n) sorry

    Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$. Is it true that $f(n)=o(n)$?

    theorem Erdos1054.erdos_1054.parts.ii :
    (∃ (A : Set ), A.HasDensity 1 (fun (n : A) => (f n)) =o[Filter.atTop] fun (n : A) => n) sorry

    Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$. Is it true that $f(n)=o(n)$ for almost all $n$?

    theorem Erdos1054.erdos_1054.parts.iii :
    (∃ (A : Set ), A.HasDensity 1 Filter.limsup (fun (n : ) => (f n) / n = ) Filter.atTop) sorry

    Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$. Is it true that $\limsup f(n)/n=\infty$?

    Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$. Show that $f$ is undefined at $n=2$, i.e. we get the junk value $0$.

    Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$. Show that $f$ is undefined at $n=5$, i.e. we get the junk value $0$.