Documentation

FormalConjectures.ErdosProblems.«1051»

Erdős Problem 1051 #

Reference: erdosproblems.com/1051

A sequence of integers a satisfies the growth condition if $\liminf a_n^{\frac{1}{2^n}} > 1$.

Equations
Instances For
    noncomputable def Erdos1051.ErdosSeries (a : ) :

    The series $\sum_{n=0}^\infty \frac{1}{a_n \cdot a_{n+1}}$.

    Equations
    Instances For
      theorem Erdos1051.erdos_1051 :
      (∀ (a : ), StrictMono aGrowthCondition aIrrational (ErdosSeries a)) sorry

      Is it true that if $a_0 < a_1 < a_2 < \cdots$ is a strictly increasing sequence of integers with $\liminf a_n^{1/2^n} > 1$, then the series $\sum_{n=0}^\infty \frac{1}{a_n \cdot a_{n+1}}$ is irrational?

      theorem Erdos1051.erdos_1051.rapid_growth (a : ) (h_mono : StrictMono a) (h_rapid : C > 0, ∀ (n : ), (a (n + 1)) C * (a n) ^ 2) :

      Erdős [Er88c] notes that if the sequence grows rapidly to infinity (specifically, if $a_{n+1} \geq C \cdot a_n^2$ for some constant $C > 0$), then the series is irrational.

      [Er88c] Erdős, P., On the irrationality of certain series: problems and results. New advances in transcendence theory (Durham, 1986) (1988), 102-109.