Erdős Problem 1041 #
Reference: erdosproblems.com/1041
The length of a subset $s$ of $\mathbb{C}$ is defined to be its 1-dimensional Hausdorff measure $\mathcal{H}^1(s)$.
Equations
Instances For
theorem
Erdos1041.exists_connected_component_contains_two_roots
(n : ℕ)
(f : Polynomial ℂ)
(hn : n ≥ 2)
(hnum : f.natDegree = n)
(h : f.rootSet ℂ ⊆ Metric.ball 0 1)
:
Erdős–Herzog–Piranian Component Lemma (Metric Properties of Polynomials, 1958): If $f$ is a degree $n$ polynomial with all roots in the unit disk, then some connected component of $\{z \mid |f(z)| < 1\}$ contains at least two distinct roots.
theorem
Erdos1041.erdos_1041
(n : ℕ)
(f : Polynomial ℂ)
(hn : n ≥ 2)
(hnum : f.natDegree = n)
(h : f.rootSet ℂ ⊆ Metric.ball 0 1)
:
Let $$ f(z) = \prod_{i=1}^{n} (z - z_i) \in \mathbb{C}[x] $$ with $|z_i| < 1$ for all $i$.
Conjecture: Must there always exist a path of length less than 2 in $$ \{ z \in \mathbb{C} \mid |f(z)| < 1 \} $$ which connects two of the roots of $f$?