Documentation

FormalConjectures.ErdosProblems.«1041»

Erdős Problem 1041 #

Reference: erdosproblems.com/1041

noncomputable def Erdos1041.length (s : Set ) :

The length of a subset $s$ of $\mathbb{C}$ is defined to be its 1-dimensional Hausdorff measure $\mathcal{H}^1(s)$.

Equations
Instances For
    theorem Erdos1041.exists_connected_component_contains_two_roots (n : ) (f : Polynomial ) (hn : n 2) (hnum : f.natDegree = n) (h_monic : f.Monic) (h : f.rootSet Metric.ball 0 1) :
    C{z : | Polynomial.eval z f < 1}, IsConnected C 2 (Multiset.filter (fun (x : ) => x C) f.roots).card

    Erdős–Herzog–Piranian Component Lemma (Metric Properties of Polynomials, 1958): If $f$ is a monic degree $n$ polynomial with all roots in the unit disk, then some connected component of $\{z \mid |f(z)| < 1\}$ contains at least two roots with multiplicity.

    See p. 139, above Problem 5: [EHP58] Erdős, P. and Herzog, F. and Piranian, G., Metric properties of polynomials. J. Analyse Math. (1958), 125-148.

    theorem Erdos1041.erdos_1041 (n : ) (f : Polynomial ) (hn : n 2) (hnum : f.natDegree = n) (h_monic : f.Monic) (h : f.rootSet Metric.ball 0 1) :
    ∃ (z₁ : ) (z₂ : ) (_ : {z₁, z₂} f.roots) (γ : Path z₁ z₂), Set.range γ {z : | Polynomial.eval z f < 1} length (Set.range γ) < 2

    Let $$ f(z) = \prod_{i=1}^{n} (z - z_i) \in \mathbb{C}[x] $$ with $|z_i| < 1$ for all $i$.

    Conjecture: Must there always exist a path of length less than 2 in $$ \{ z \in \mathbb{C} \mid |f(z)| < 1 \} $$ which connects two of the roots of $f$?