Documentation

FormalConjectures.ErdosProblems.«1038»

Erdős Problem 1038 #

Reference:

theorem Erdos1038.erdos_1038.inf (n : ) :
sorry = ⨅ (f : { f : Polynomial // f.Monic f 1 (Multiset.filter (fun (x : ) => x Set.Icc (-1) 1) f.roots).card = f.natDegree }), MeasureTheory.volume {x : | |Polynomial.eval x f| < 1}

What is the infimum of |{x ∈ ℝ : |f x| < 1}| over all nonconstant monic polynomials f such that all of its roots are real and contained in [-1,1]?

The infimum of |{x ∈ ℝ : |f x| < 1}| over all nonconstant monic polynomials f such that all of its roots are real and contained in [-1,1] is < 1.835.

theorem Erdos1038.erdos_1038.inf_lowerBound (n : ) :
2 ^ (4 / 3) - 1 ⨅ (f : { f : Polynomial // f.Monic f 1 (Multiset.filter (fun (x : ) => x Set.Icc (-1) 1) f.roots).card = f.natDegree }), MeasureTheory.volume {x : | |Polynomial.eval x f| < 1}

The infimum of |{x ∈ ℝ : |f x| < 1}| over all nonconstant monic polynomials f such that all of its roots are real and contained in [-1,1] is ≥ 2 ^ (4 / 3) - 1.

theorem Erdos1038.erdos_1038.sup (n : ) :
2 * 2 ^ (1 / 2) = ⨆ (f : { f : Polynomial // f.Monic (Multiset.filter (fun (x : ) => x Set.Icc (-1) 1) f.roots).card = f.natDegree }), MeasureTheory.volume {x : | |Polynomial.eval x f| < 1}

The supremum of |{x ∈ ℝ : |f x| < 1}| over all monic polynomials f such that all of its roots are real and contained in [-1,1] is 2 * 2 ^ (1 / 2). This is proved in [Tao25].