Documentation

FormalConjectures.ErdosProblems.«1»

Erdős Problem 1 #

Reference: erdosproblems.com/1

@[reducible, inline]
abbrev IsSumDistinctSet (A : Finset ) (N : ) :

A finite set of naturals $A$ is said to be a sum-distinct set for $N \in \mathbb{N}$ if $A\subseteq\{1, ..., N\}$ and the sums $\sum_{a\in S}a$ are distinct for all $S\subseteq A$

Equations
Instances For
    theorem erdos_1 :
    C > 0, ∀ (N : ) (A : Finset ), IsSumDistinctSet A NN 0C * 2 ^ A.card < N

    If $A\subseteq\{1, ..., N\}$ with $|A| = n$ is such that the subset sums $\sum_{a\in S}a$ are distinct for all $S\subseteq A$ then $$ N \gg 2 ^ n. $$

    theorem erdos_1.variants.weaker :
    C > 0, ∀ (N : ) (A : Finset ), IsSumDistinctSet A NN 0C * 2 ^ A.card / A.card < N

    The trivial lower bound is $N \gg 2^n / n$.

    theorem erdos_1.variants.lb :
    ∃ (o : ) (_ : Filter.Tendsto o Filter.atTop (nhds 0)), ∀ (N : ) (A : Finset ), IsSumDistinctSet A N → (1 / 4 - o A.card) * 2 ^ A.card / A.card N

    Erdős and Moser [Er56] proved $$ N \geq (\tfrac{1}{4} - o(1)) \frac{2^n}{\sqrt{n}}. $$

    [Er56] Erdős, P., Problems and results in additive number theory. Colloque sur la Th'{E}orie des Nombres, Bruxelles, 1955 (1956), 127-137.

    theorem erdos_1.variants.lb_strong :
    ∃ (o : ) (_ : Filter.Tendsto o Filter.atTop (nhds 0)), ∀ (N : ) (A : Finset ), IsSumDistinctSet A N → ((2 / Real.pi) - o A.card) * 2 ^ A.card / A.card N

    A number of improvements of the constant $\frac{1}{4}$ have been given, with the current record $\sqrt{2 / \pi}$ first provied in unpublished work of Elkies and Gleason.

    @[reducible, inline]
    abbrev IsSumDistinctRealSet (A : Finset ) (N : ) :

    A finite set of real numbers is said to be sum-distinct if all the subset sums differ by at least $1$.

    Equations
    Instances For
      theorem erdos_1.variants.real :
      C > 0, ∀ (N : ) (A : Finset ), IsSumDistinctRealSet A NN 0C * 2 ^ A.card < N

      A generalisation of the problem to sets $A \subseteq (0, N]$ of real numbers, such that the subset sums all differ by at least $1$ is proposed in [Er73] and [ErGr80].

      [Er73] Erdős, P., Problems and results on combinatorial number theory. A survey of combinatorial theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, Colo., 1971) (1973), 117-138.

      [ErGr80] Erdős, P. and Graham, R., Old and new problems and results in combinatorial number theory. Monographies de L'Enseignement Mathematique (1980).

      The minimal value of $N$ such that there exists a sum-distinct set with three elements is $4$.

      https://oeis.org/A276661

      The minimal value of $N$ such that there exists a sum-distinct set with five elements is $13$.

      https://oeis.org/A276661

      The minimal value of $N$ such that there exists a sum-distinct set with nine elements is $161$.

      https://oeis.org/A276661