Documentation

FormalConjectures.Arxiv.«2107.00295».IndependentDomination

Conjecture 1.6 #

Reference: arxiv/2107.00295 On independent domination of regular graphs by Eun-Kyung Cho, Ilkyoo Choi, Boram Park

theorem Arxiv.«2107.00295».independentDominationEven {V : Type u_1} [Fintype V] [DecidableEq V] (G : SimpleGraph V) [DecidableRel G.Adj] (hIso : 0 < G.minDegree) (hEven : Even G.maxDegree) :
have D := G.maxDegree; have i := G.indepDominationNumber; have n := Fintype.card V; (D + 2) ^ 2 * i (D ^ 2 + 4) * n

Conjecture 1.6 (Even case). For a nonempty isolate-free graph $G$ on $n$ vertices, if $D$ is even, then $(D + 2)^2 \cdot i(G) \leq (D^2 + 4) \cdot n$.

theorem Arxiv.«2107.00295».independentDominationOdd {V : Type u_1} [Fintype V] [DecidableEq V] (G : SimpleGraph V) [DecidableRel G.Adj] (hIso : 0 < G.minDegree) (hOdd : Odd G.maxDegree) :
have D := G.maxDegree; have i := G.indepDominationNumber; have n := Fintype.card V; (D + 1) * (D + 3) * i (D ^ 2 + 3) * n

Conjecture 1.6 (Odd case). For a nonempty isolate-free graph $G$ on $n$ vertices, if $D$ is odd, then $(D + 1)(D + 3) \cdot i(G) \leq (D^2 + 3) \cdot n$.