Documentation

FormalConjectures.Arxiv.«1609.08688».sIncreasingrTuples

The length of an $s$-increasing sequence of $r$-tuples #

This file contains the formalisation of [GoLo21] up to and including Conjecture 1.8

[GoLo21] W.T. Gowers and J. Long, The length of an $s$-increasing sequence of $r$-tuples, Combinatorics, Probability and Computing (2021), 686-721.

References:

def Arxiv.id160908688.lt₂ {α : Type u_1} [LT α] (a b : Fin 3α) :

Let $a = (a_1, a_2, a_3)$ and $b = (b_1, b_2, b_3)$ be two triples of integers. Say that $a$ is $2$-less than $b$, or $a <_2 b$, if $a_i < b_i$ for at least two co-ordinates $i$.

Equations
Instances For
    @[simp]
    theorem Arxiv.id160908688.not_lt₂ {α : Type u_1} [LinearOrder α] {a b : Fin 3α} :
    ¬lt₂ a b ∀ (i j : Fin 3), i ja i < b ib j a j
    theorem Arxiv.id160908688.not_lt₂_of_forall_le {α : Type u_1} [LinearOrder α] {a b : Fin 3α} (h : ∀ (i : Fin 3), b i a i) :
    theorem Arxiv.id160908688.not_lt₂_of_exists {α : Type u_1} [LinearOrder α] {a b : Fin 3α} (i j : Fin 3) (hij : i j) (hi : b i a i) (hj : b j a j) :
    theorem Arxiv.id160908688.not_lt₂_self {α : Type u_1} [LinearOrder α] (a : Fin 3α) :
    theorem Arxiv.id160908688.not_trans_lt₂_nat :
    ∃ (a : Fin 3) (b : Fin 3) (c : Fin 3), lt₂ a b lt₂ b c ¬lt₂ a c

    The $2$-less relation is not transitive on the naturals.

    def Arxiv.id160908688.IsIncreasing₂ {α : Type u_1} [LT α] (s : List (Fin 3α)) :

    Since the $2$-less relation is not transitive, we make a further definition to specify transivity.

    Equations
    Instances For
      @[simp]
      theorem Arxiv.id160908688.isIncreasing₂_singleton {α : Type u_1} [LT α] (a : Fin 3α) :
      theorem Arxiv.id160908688.isIncreasing₂_const_length {α : Type u_1} [LinearOrder α] {val : α} {s : List (Fin 3α)} (h : IsIncreasing₂ s) (h_const : as, ∀ (j : Fin 3), a j = val) :
      s.length < 2
      noncomputable def Arxiv.id160908688.maximalLength (n : ) :

      Let $F(n)$ be the maximal length of a $2$-increasing sequence of triples with each coordinate belong to $[n]$ ($= \{1, 2, ..., n\}$).

      Equations
      Instances For
        theorem Arxiv.id160908688.exists_pair_of_mem_Icc {s : List (Fin 3)} {n : } (hn : 2 n) (hs₁ : as, Set.range a Set.Icc 1 n) (hs₂ : s.length > n ^ 2) :
        ∃ (i : Fin s.length) (j : Fin s.length), i j s[i] 0 = s[j] 0 s[i] 1 = s[j] 1

        In a set of more than $n^2$ triples with coordinates from $\{1, ..., n\}$ we must have two triples that are equal in their first two coordinates.

        For all $n$ we have $F(n) \leq n^2$.

        Moreover, whenever $n$ is a perfect square we have $F(n) \geq n^{3/2}$.

        def Arxiv.id160908688.IsComparable₂ {α : Type u_1} [LT α] (t₁ t₂ : Fin 3α) :

        Two triples $t_1$ and $t_2$ are $2$-comparable if one of them is $2$-less than the other.

        Equations
        Instances For
          def Arxiv.id160908688.IsComparableSet₂ {α : Type u_1} [LT α] (s : List (Fin 3α)) :

          A set of triples is $2$-comparable if any two of them are $2$-comparable.

          Equations
          Instances For
            theorem Arxiv.id160908688.maximalLength_le_isBigO :
            ∃ (Ω : ), (fun (n : ) => (↑n).iteratedLog) =O[Filter.atTop] Ω ∀ (n : ), (maximalLength n) n ^ 2 / Real.exp (Ω n)

            $F(n) \leq n^2 / \exp(\Omega(\log^*(n)))$.

            def Arxiv.id160908688.tripleProduct {α : Type u_1} (a b : Fin 3α) :
            Lex ((i : Fin 3) → (fun (x : Fin 3) => α × α) i)

            We define the product of two triples $(a, b, c)$ and $(d, e, f)$ by $((a, d), (b, e), (c, f))$, where the pairs are arranged in lexicographical order.

            Equations
            Instances For
              @[simp]
              theorem Arxiv.id160908688.tripleProduct_const {α : Type u_1} (a : α) :
              (tripleProduct (fun (x : Fin 3) => a) fun (x : Fin 3) => a) = toLex fun (x : Fin 3) => (a, a)
              def Arxiv.id160908688.sequenceProduct {α : Type u_1} (s t : List (Fin 3α)) :
              Lex (List (Lex ((i : Fin 3) → (fun (x : Fin 3) => α × α) i)))

              We define the product $\otimes$ of two sequences $(a_i, b_i, c_i)$ and $(d_i, e_i, f_i)$ by the sequence $((a_i, d_j), (b_i, e_j), (c_i, f_j))$, where the indices $(i, j)$ are arranged lexicographically, and the pairs are also ordered lexicographically.

              Equations
              Instances For
                theorem Arxiv.id160908688.maximalLength_pow {n : } {e : } (hn : 1 < n) (h : (maximalLength n) = n ^ e) :

                Suppose that for some $n$ we have $F(n) = n ^ {\alpha}$. Then there are arbitrarily large $m$ such that $F(m) \geq m^{\alpha}$.

                $F(n) \leq n^{3/2}$.