Approximation of Quantum Gates using Lattices #
Reference: arxiv/1506.05785 On the Approximation of Quantum Gates using Lattices by Alec Greene and Steven Damelin
The integer lattice ℤ⁴ as the ℤ-span of the standard basis in 4-dimensional Euclidean space.
Equations
- EuclideanSpace.«termℤ⁴» = Lean.ParserDescr.node `EuclideanSpace.«termℤ⁴» 1024 (Lean.ParserDescr.symbol "ℤ⁴")
Instances For
Conjecture 3.4 There exists $0 < \delta < 1$ such that for any $a \in \mathbb{S}^3$, there exists $b \in \mathbb{Z}^4$ and $k \in \mathbb{Z}$ such that $\|b\| = 5^k$ and $\langle a, \frac{b}{\|b\|} \rangle \geq 1 - 5^{-\frac{k}{2 - \delta}}.$