Documentation

FormalConjectures.Arxiv.«1506.05785».MaximumAngle

Approximation of Quantum Gates using Lattices #

Reference: arxiv/1506.05785 On the Approximation of Quantum Gates using Lattices by Alec Greene and Steven Damelin

The integer lattice ℤ⁴ as the ℤ-span of the standard basis in 4-dimensional Euclidean space.

Equations
Instances For
    theorem Arxiv.«1506.05785».conjecture_3_4 :
    δSet.Ioo 0 1, ∀ (a : EuclideanSpace (Fin 4)), a = 1∃ (b : (Submodule.span (Set.range (PiLp.basisFun 2 (Fin 4))))), k > 0, b = 5 ^ k 1 - 5 ^ (-k / (2 - δ)) inner a (b⁻¹ b)

    Conjecture 3.4 There exists $0 < \delta < 1$ such that for any $a \in \mathbb{S}^3$, there exists $b \in \mathbb{Z}^4$ and $k \in \mathbb{Z}$ such that $\|b\| = 5^k$ and $\langle a, \frac{b}{\|b\|} \rangle \geq 1 - 5^{-\frac{k}{2 - \delta}}.$